Workflow
卷积神经网络(CNN)
icon
搜索文档
图灵奖得主竟「忘了提及」中国学者成果?马库斯重锤Yann LeCun
36氪· 2025-11-19 19:19
核心观点 - 文章围绕Yann LeCun可能离开Meta以及其与Gary Marcus的学术争议展开,核心是AI领域关于技术路线(LLM vs 世界模型)和学术贡献(CNN发明权)的激烈辩论 [1][5][6][8] Yann LeCun的观点与立场 - Yann LeCun是图灵奖得主,Meta首席AI科学家,但公开反对大语言模型,认为LLM是死胡同,未来3到5年会被淘汰,其智商不如猫 [1][29][31] - 主张发展“世界模型”,该模型通过观察视觉信息来理解世界,类似于人类婴儿的学习方式 [31][32] - 在Meta内部被边缘化,其领导的FAIR实验室面临裁员和资源缩减,28岁的Alexandr Wang被提拔为其上司 [40][41][43][45] - 计划离开Meta并创立新公司,专注于开发“世界模型” [26][31][47] Gary Marcus的批评与指控 - Gary Marcus是认知科学家,深度学习的长期批判者,认为LLM存在幻觉问题,无法真正理解,且难以通向AGI [6][8] - 指控Yann LeCun的学术成就存在包装和剽窃,并非CNN的发明者 [5][9][10] - 指出CNN的基础工作由日本学者福岛邦彦在1979年完成,中国学者张伟等人在1988年早于LeCun将反向传播应用于CNN训练 [11][21][22][23] - 批评LeCun在LLM问题上的立场转变,指其在ChatGPT成功前曾赞扬LLM,之后才转变为反对者,是见风使舵 [23][24] - 认为“世界模型”概念并非创新,早在1950年代由赫伯特·西蒙等人提出,LeCun是旧概念新包装 [26][27] 学术争议背景 - Jürgen Schmidhuber是另一位长期指控深度学习巨头抄袭成果的研究者,并专门撰文质疑2018年图灵奖的颁发 [14][16][19] - Schmidhuber指出张伟等人于1988年以日文发表、1989年4月提交期刊的CNN研究,早于LeCun1989年7月发表的英文论文 [21][22][23] - 争议焦点在于LeCun通过英文论文在知名平台发表,但未充分引用前辈工作,被指责系统性抹杀同行贡献 [23][28]
LSTM之父Jürgen再突破,「赫胥黎-哥德尔机」让AI学会自己进化
机器之心· 2025-10-28 14:29
文章核心观点 - 研究提出了一种名为赫胥黎-哥德尔机的新型自我改进人工智能体,其核心创新在于通过谱系元生产力指标来近似实现理论上的哥德尔机,有效解决了短期性能与长期自我改进潜力之间的脱节问题 [1][6][10] - 该机器在SWE-bench和Polyglot等软件工程基准测试中,不仅超越了现有的自我改进编程方法,而且达到了与最佳人工设计智能体相当的人类水平表现,同时展现出更高的计算效率和强大的跨模型泛化能力 [7][32][35][37] 理论基础与模型演进 - 哥德尔机是一种理论上的通用任务求解器,能通过形式证明来最优地执行自我改进,但其实现受限于实际资源消耗和单次生命等现实约束 [11][12] - 赫胥黎-哥德尔机是哥德尔机的一种实践近似,其核心思想是利用元生产力来衡量智能体提升自我改进能力的潜力,并通过估计谱系元生产力来指导搜索 [10][17][20] 核心创新:谱系元生产力 - 研究发现了“元生产力-性能不匹配”现象,即智能体当前的基准测试性能与其真正的自我改进潜力之间存在脱节 [4][20] - 提出了谱系元生产力指标,通过聚合一个智能体所有后代的性能来衡量其长期潜力,而非仅看其自身分数 [4][18] - HGM的CMP估计量与真实CMP的相关性显著更强,在SWE-Verified-60和Polyglot上的加权相关系数分别达到0.778和0.626,远超对比方法SICA和DGM [27][31] 算法框架与策略 - HGM框架包含三个子策略:扩展策略、评估策略和选择策略 [21][24] - 扩展策略使用谱系中智能体经验性能的加权平均值来估计CMP,为效用更高的智能体分配更大权重 [22] - 评估策略优先选择得分更高的智能体,选择策略则借鉴无限臂赌博机思想,平衡探索新智能体与利用已知智能体 [24][25][30] 性能表现与效率 - 在SWE-Verified-60基准测试中,HGM发现的智能体取得56.7%的最高准确率,在Polyglot基准测试中以30.5%的准确率领先 [34][36] - HGM展现出极高的计算效率,在Polyglot上比DGM快6.86倍,比SICA快1.65倍;在SWE-Verified-60上比DGM快2.38倍 [33][34][36] - HGM仅消耗517小时CPU时间即在SWE-Verified-60上取得最佳性能,远低于DGM的1231小时 [34] 泛化能力与人类水平表现 - HGM发现的智能体在SWE-Lite基准测试的过滤集和标准集上分别取得40.1%和49.0%的准确率,优于其初始版本的34.8%和44.0% [35][37] - 当骨干模型从GPT-5-mini替换为GPT-5时,该智能体在SWE-Lite标准集上取得57%的准确率,与排行榜上最佳人工设计智能体SWE-agent的56.7%相当 [37][39] - 在官方SWE-Bench Lite排行榜上,HGM智能体的性能超越了所有其他经过官方结果验证的智能体,在筛选测试集上仅比最佳模型少解决一个任务 [40]
“AI教父”辛顿现身WAIC:称AI将寻求更多控制权
第一财经· 2025-07-26 14:27
人工智能发展路径与现状 - 人工智能发展存在两种不同范式:符号型逻辑性范式和以生物为基础的范式,辛顿在1985年尝试结合这两种理论[3] - 当前大语言模型是辛顿早期微型语言模型的衍生,采用更多词输入、更多层神经元结构,处理大量模糊数字并建立复杂交互模式[4] - 大语言模型理解语言的方式与人类相似,通过将语言转化为特征并整合这些特征,因此也会产生"幻觉"[4] 人工智能技术突破 - 2012年辛顿团队开发的AlexNet算法采用卷积神经网络(CNN),成为机器学习重要分支[5] - AlexNet仅使用4颗英伟达GPU就取得突破性成果,相比谷歌猫项目使用的16000颗CPU大幅提升效率[5] - GPU在深度学习中的价值被辛顿早期发现,AlexNet论文成为计算机科学史上最具影响力的论文之一[5] 人工智能安全挑战 - 几乎所有专家认为人类将创造出比自身更智能的AI,AI未来可能为生存和目标寻求更多控制权[1][4] - 辛顿将AI发展比喻为抚养虎崽,强调需要确保其不会伤害人类[4] - AI接管并摧毁人类文明的概率估计在10%至20%之间[6] - 建议将至少三分之一计算资源用于研究如何确保AI系统不偏离人类意图[6] 人工智能治理建议 - 提议建立AI安全机构国际社群,研究训练AI向善的技巧[5] - 各国可在主权范围内研究并分享成果,全球或AI领导国家应建立相关网络[5] - 批评大型科技公司为商业利益游说放松监管是危险趋势[6] - 强调需要国际合作预防AI统治世界,防止AI夺走人类控制权[4]
建模市场与人机共振:李天成超越价格预测的认知框架
搜狐网· 2025-06-30 18:40
市场认知框架 - 市场不可被精确预测,目标是构建理解市场状态和短期演化方向的认知框架 [1] - 交易本质是在非平稳、高噪音随机过程中寻找期望收益为正的决策机会 [1] - 传统技术分析存在降维失真问题,忽略驱动价格的高维潜在空间 [1] 模型范式演进 - CNN可识别局部空间模式但缺乏对时间序列路径依赖的理解 [2] - LSTM能捕捉时序信息但假设信息沿单一时间线流动,与市场网络化结构矛盾 [3] - 需从序列依赖建模转向结构与时间联合依赖建模 [5] 市场关系拓扑计算 - 构建动态多关系类型的时态知识图谱,数学本质为高阶张量 [6] - 引入异构霍克斯过程建模事件流,量化历史事件对当前事件的增强效应 [6] - 通过最大化对数似然函数反解实体和关系类型的嵌入向量 [7] 人机共振机制 - 人类策略师角色是模型架构的先验设定者,提供对市场的认知和洞察 [9] - 先验概率来自对产业变迁和技术范式转移的理解,转化为模型因子权重 [10] - 决策框架追求数学期望长期为正,赚取认知系统与市场平均认知水平的差价 [11]