Workflow
图形学
icon
搜索文档
暑假打打比赛!PRCV 2025空间智能与具身智能视觉感知挑战赛正式启动~
自动驾驶之心· 2025-06-30 20:51
竞赛概述 - 竞赛聚焦空间智能与具身智能的视觉感知技术,旨在推动高效、高质量的技术研究,探索强化学习、计算机视觉等前沿方法的创新,并促进神经渲染、场景优化等方向的应用 [2][4] - 竞赛由北京科技大学、清华大学、中国科学院自动化研究所等机构联合组织,北京九章云极科技有限公司提供赞助和技术支持 [5] 参赛要求与流程 - 参赛者包括高校教师、研究生、博士生及企事业单位研究团体,以个人或团队形式报名,每队不超过5人 [8][9] - 报名需通过邮件提交团队信息,截止日期为7月31日,比赛分为训练集发布、结果提交、评测和颁奖四个阶段 [5][6][10] 竞赛资源与任务 - 提供大规模无人机航拍图(500-1000张1k分辨率)和具身智能仿真场景数据,九章云极免费提供8卡H800 GPU算力用于验证 [11][12] - 赛道1要求构建多视角航拍图像的三维重建模型,评估渲染质量(PSNR)和几何精度(F1-Score) [17][19][20] - 赛道2要求完成动态遮挡场景的抓取任务,评估任务完成度(成功率、位姿误差)和执行效率(耗时、路径效率) [21][23] 奖项设置 - 每个赛道设一等奖(6000元+500度算力券)、二等奖(3000元+200度算力券)、三等奖(1000元+100度算力券)及优胜奖(500元+50度算力券) [25] 相关会议 - 竞赛结果将在PRCV2025大会(10月15-18日)公布,该会议是CCF分区顶级学术会议,涵盖模式识别与计算机视觉领域前沿成果 [27][28]
单应计算加速数十倍、计算量减少95%!基于几何的SKS和ACA矩阵分解被提出
机器之心· 2025-06-19 11:50
论文简介 - 东华大学、上海交通大学、中科院自动化所研究团队提出两种基于几何的单应矩阵分解方法,相比传统稀疏线性方程组方法减少95%以上计算量,显著提升二维码扫描等视觉应用效率[3] - 该方法适用于射影几何、计算机视觉和图形学领域,论文已被IEEE T-PAMI期刊接收[4] - 论文标题为《Fast and Interpretable 2D Homography Decomposition: Similarity-Kernel-Similarity and Affine-Core-Affine Transformations》,提供代码、视频介绍及奖金激励[5] 问题背景 - 平面单应是8自由度的3×3矩阵,传统DLT方法通过构建稀疏线性方程组求解,OpenCV实现需约2000次浮点运算[6] - 改进方法包括3×3矩阵SVD分解(1800次运算)和定制化高斯消元法(220次运算),二维码场景可进一步简化但缺乏研究[7] 核心方法 - SKS变换利用两组对应点分解单应为相似-射影核-相似变换,通过标准点转换和双曲相似变换实现几何层次化求解[9][10][11] - ACA变换通过三组对应点实现仿射-射影核-仿射分解,仅需85次浮点运算,正方形模板场景可优化至29次运算[15][16][18] 性能对比 - ACA分解单次计算仅需17纳秒,相比DLT+LU方法实现43倍实际加速(理论FLOPs提升20倍)[21][22] - SKS方法在O2优化下实现29倍加速,超越理论11倍FLOPs改进,因避免了条件判断等额外开销[22] 应用前景 - 日均百亿次二维码扫描场景中,新方法可减少浮点运算量,相比传统DLT+LU节省显著[24] - 技术可集成于相机标定、图像拼接、AR等视觉任务,并延伸至深度学习单应估计、P3P姿态估计等研究方向[24][25]
奥克兰大学计算机科学本科申请:人工智能与编程的前沿突破
搜狐财经· 2025-05-27 12:42
专业优势 - 奥克兰大学计算机科学本科专业拥有卓越学术资源与雄厚师资力量 在国际上享有盛誉 科研成果丰硕 在人工智能 数据科学 网络安全等领域处于行业前沿 [3] - 教授团队来自世界各地 学术研究成果斐然 发表众多高影响力论文 并与谷歌 微软等国际科技巨头保持密切合作 将行业最新动态带入课堂 [3] - 配备先进计算机实验室 包括高性能计算集群 虚拟现实设备等 满足复杂编程实验和人工智能项目开发需求 [3] - 与众多科技企业合作 提供实习和就业机会 使学生接触实际商业项目 积累实践经验 [3] 申请要求 - 国际学生需完成高中教育且三年平均成绩达80%以上 数学和物理等相关学科成绩需突出 [4] - 中国学生高考成绩需达所在省份一本线以上 或凭借A-Level IB等国际课程成绩申请 [4] - 语言要求雅思总分6.5且单项不低于6.0 托福总分90以上且写作不低于21 未达标者可先参加语言课程 [4] 学习内容 - 大一课程包括计算机科学导论 编程基础(Python和Java) 离散数学等 建立整体认知和基本技能 [6] - 大二 大三核心课程涵盖数据结构与算法 计算机系统原理 数据库系统等 深入理解底层逻辑 [6] - 选修课程包括人工智能 机器学习 计算机图形学 网络安全等 探索前沿领域 [6] - 设置项目实践课程 学生分组完成实际编程项目 如开发智能应用程序或设计网络安全系统 锻炼团队协作和解决问题能力 [6]