Workflow
多模态感知融合
icon
搜索文档
当导师让我去看多模态感知研究方向后......
自动驾驶之心· 2025-09-08 07:34
自动驾驶多模态感知融合技术发展现状 - 激光雷达在自动驾驶感知中具有核心优势:提供超长感知距离的安全冗余、高帧率实时感知、恶劣环境抗干扰保障和三维空间认知能力 [1] - 多传感器融合是国内高端智能驾驶量产的主流范式 激光雷达与视觉感知结合构成可靠工作能力 [1] - 多模态感知融合技术正从传统融合向端到端融合和Transformer架构演进 [1] 多模态融合技术架构演进 - 传统融合分为三种方式:早期融合(输入端拼接原始数据 计算量巨大) 中期融合(传感器特征提取后融合 当前主流方案) 后融合(决策层结果融合 可解释性强但难以解决信息冲突) [2] - 基于Transformer的端到端融合成为最前沿方向:通过跨模态注意力机制学习不同模态深层关系 实现高效鲁棒的特征交互 [2] - 端到端训练减少中间模块误差累积 直接从原始传感器数据输出3D目标框 提升动态信息捕捉能力和整体性能 [2] 多模态融合科研培训课程体系 - 课程设计为期14周:包含12周在线小组科研 2周论文指导和10周论文维护期 [10][21] - 招生规模为6人/期 至多8人 采用"2+1"式师资配置(名校教授+行业导师+科研班主任) [5][11] - 硬件要求最低2张4090显卡 推荐4张4090或以上性能设备 支持云服务器租赁 [11] 课程技术内容体系 - 覆盖多模态融合全技术栈:从传统模块化感知系统到BEV视角融合 再到基于Transformer的端到端融合 [15] - 提供完整科研支持:包括公开数据集(nuScenes、KITTI、Waymo Open Dataset)、Baseline代码和论文idea [12][13][14] - 重点讲解激光-视觉深度融合和雷达-视觉-激光三元融合技术 涵盖多任务多传感器融合方案 [15][16] 学术产出与培养目标 - 学员将产出论文初稿 获得结业证书和推荐信(根据优秀程度) [11] - 培养体系解决三大问题:知识体系碎片化 动手能力不足 论文写作投稿困难 [5] - 课程包含完整论文方法论:从选题方法、实验方法到写作方法和投稿建议 [4][10]
科协年会助力青年人才挑大梁
科技日报· 2025-08-03 11:43
年会概况 - 第二十七届中国科协年会于7月1日至31日在北京举办,主题为"示踪科技前沿 助力创新发展",涵盖主论坛、专题论坛等6个版块百余项活动 [1] - 年会吸引7000余人次科技工作者参与,包括110余人次院士,其中40岁以下青年科技工作者占比57% [1] - 年会共开展990余个高水平学术报告 [1] 青年科技工作者参与 - 青年科技工作者深度参与并主导前沿讨论是本届年会亮点 [2] - 北京交通大学副教授张慧在"具身智能机器人"论坛中受到启发,将具身学习思想融入自身研究 [3] - 青年学者在会上直接向院士、专家提问,自由讨论氛围打破思维定式 [4] 学术交流机制 - 年会优化研讨机制,增加交流时长,聚焦非共识议题 [4] - 核工业西南物理研究院副研究员肖国梁参与核聚变论坛,跨领域讨论打破学识与年龄层级限制 [4] - 中国电机工程学会副秘书长申彦红表示年会鼓励科研不确定性和非共识观点,营造包容开放的学术环境 [4]
中科院自动化所最新综述!VLA模型后训练与类人运动学习的共性
具身智能之心· 2025-06-29 17:51
核心观点 - 文章从人类运动技能学习角度系统总结了VLA模型的后训练策略,提出环境、具身、任务三维分类框架,并探讨神经科学对机器人学习的启发[4][5][6] - VLA模型需通过后训练从通用预训练转向特定任务适配,类似人类从遗传能力到专项技能的转化过程[8][9] - 类脑视角下,后训练技术可划分为环境感知增强、具身认知优化、任务理解深化及多组件集成四大方向[10][12] VLA模型与后训练重要性 - VLA模型整合视觉、语言与动作生成模块,实现"看-听-动"闭环,但预训练模型在真实场景中需后训练提升精度与鲁棒性[8] - 后训练利用少量目标场景数据微调模型,使其适应机器人物理特性与任务需求,解决"开箱即用"性能不足的问题[9] 三维后训练策略 环境维度 - 引入可供性线索强化模型对环境交互可能性的理解,如物体功能暗示(门把手提示抓握)[12] - 优化视觉编码器与多模态感知融合,提升环境细节记忆与抗遗忘能力[12][13] 具身维度 - 建立机器人正向/逆向运动学模型,模拟人类前馈-反馈控制机制实现精准动作规划[14] - 借鉴小脑多内部模型协同机制,设计分层动作控制模块[14] 任务维度 - 通过人类示范数据注入专家知识,加速任务理解[14] - 采用层次化策略分解长程任务为可管理子步骤,对应人类分而治之的神经处理模式[14][17] 技术挑战与趋势 - 数据效率:需开发课程学习、主动采样等类人策略降低训练数据需求[22] - 多模态扩展:触觉/深度传感等新模态输入可提升环境交互真实性,但面临传感器融合难题[22] - 持续学习:当前离线微调易导致遗忘,需借鉴人类记忆机制开发终身学习框架[22] - 开放泛化:从实验室性能优化转向未知环境适应能力建设[22]