Workflow
纳维 - 斯托克斯方程
icon
搜索文档
张朝阳对话理论物理学家汤大卫:我们来自量子涨落,也都是恒星的尘埃
量子位· 2025-07-31 14:51
物理学发展历程 - 牛顿力学起源于开普勒三定律与牛顿的平方反比引力定律推导,关键突破在于利用平方反比律证明行星椭圆轨道[2][3] - 分析力学(拉格朗日/哈密顿体系)比牛顿力学更强大,能统一处理对称性问题并为量子力学算符理论奠定基础[5][6][7] - 量子力学诞生于1925年海森堡的矩阵力学,其核心价值在于揭示世界的离散性本质而非哲学讨论[25][26][29][30] - 量子场论经过1925-1950年发展成型,标准模型精度达到电子磁矩13位小数吻合,成为描述宇宙的基础框架[33][34] 前沿物理研究 - 流体力学在夸克-胶子等离子体研究中展现价值,纳维-斯托克斯方程可描述这种新物质形态[8][9] - 引力波观测推动黑洞研究,近期发现300-400太阳质量黑洞碰撞事件挑战现有认知[22] - 宇宙结构源于138亿年前量子涨落,暴胀机制仍待研究,地外生命存在概率存在学科争议[22][24] 科学传播方法论 - 科普应避免过度简化类比(如薛定谔的猫),需保留数学严谨性以传达物理本质[30][38][41] - 互联网时代科学家可通过自媒体直接参与公众教育,但需平衡研究时间与传播投入[35][36][37] - AI辅助科研呈现两重性:能高效处理脚本等基础工作,但尚无法替代理论构建与创造性证明[10][11][37]
突破125年世纪难题!北大校友联手科大少年班才子破解希尔伯特第六问题
量子位· 2025-06-14 16:33
数学物理重大突破 - 北大校友邓煜、中科大少年班马骁与陶哲轩高徒扎赫尔・哈尼在希尔伯特第六问题"物理学的公理化"上取得重大突破[2] - 首次严格证明从牛顿力学到玻尔兹曼方程的完整过渡 填补了微观可逆与宏观不可逆之间的逻辑鸿沟[11][13] - 成果为统计力学奠定更坚实数学基础 并意外解答玻尔兹曼时代遗留的"时间箭头之谜"[13][35] 核心突破路径 - 分两步完成推导:先通过"动力学极限"从牛顿定律推导玻尔兹曼方程 再通过"流体动力学极限"推导流体方程[14][15] - 在Boltzmann-Grad极限下(N→∞, ε→0) 证明硬球粒子系统的单粒子密度可由玻尔兹曼方程描述[17] - 创新采用逐次近似法分解复杂波动模式 并设计轨迹追踪方法解决粒子碰撞导致的蝴蝶效应问题[19][21] 技术方法论 - 从无限空间气体模型入手降低复杂度 后通过傅里叶变换迁移至周期性边界条件盒子环境[22] - 引入克努森数衡量气体稀薄程度 结合Chapman-Enskog展开法分层解析分子分布函数[26][27] - 利用碰撞守恒特性推导宏观守恒定律 通过熵增原理关联分子变化与宏观能量损耗[28][29] 理论成果 - 形成"牛顿力学→统计力学→流体力学"完整逻辑链 推导出不可压缩纳维-斯托克斯-傅里叶方程组及可压缩欧拉方程[31][32] - 在特定条件下证明玻尔兹曼方程解趋近于纳维-斯托克斯方程解 但湍流等复杂现象仍有局限[30][31] - 数学验证玻尔兹曼直觉:尽管单粒子可逆 但几乎所有碰撞模式最终导致气体扩散不可逆[36][37] 研究者背景 - 邓煜:北大转MIT数学学士 普林斯顿博士 芝加哥大学副教授 曾获IMO金牌及2024年ICBS数学前沿奖[38][39][41] - 马骁:中科大少年班 普林斯顿博士 密歇根大学助理教授 华罗庚数学科技英才班成员[41] - 扎赫尔・哈尼:陶哲轩UCLA博士 研究领域为非线性偏微分方程与数学物理[43][44]