Artificial Intelligence

搜索文档
IT leaders aren’t ready for AI autonomy
Yahoo Finance· 2025-09-30 22:09
This story was originally published on CIO Dive. To receive daily news and insights, subscribe to our free daily CIO Dive newsletter. Dive Brief: IT leaders are wary of autonomous AI agents, preferring to keep some level of human oversight, according to Gartner research published Tuesday. The analyst firm surveyed 360 IT application leaders from organizations with at least 250 full-time employees. Just 15% of IT application leaders are currently piloting, deploying or considering fully autonomous AI age ...
Burkhan Capital LLC led consortium commits to investing $300 Million in Robo.ai to Power Global AI and Robotics Platform Acceleration
Prnewswire· 2025-09-30 22:01
Accessibility StatementSkip Navigation MIAMI and DUBAI, UAE, Sept. 30, 2025 /PRNewswire/ -- Burkhan Capital LLC (Burkhan), a global investment platform focused on high-impact technology, and Robo.ai Inc. (NASDAQ: AIIO), a technology company featuring integrated and AI-enabled Software, Smart Device, and Smart Assets ecosystems, today jointly announce a strategic investment. An investment consortium led by Burkhan has committed $300 million in investment to empower and accelerate Robo.ai's growth and trans ...
Eightfold AI Harnesses the Power of Humans with Salesforce in the Era of Agentic AI
Globenewswire· 2025-09-30 22:01
SANTA CLARA, Calif., Sept. 30, 2025 (GLOBE NEWSWIRE) -- Eightfold AI announced an expansion of its relationship with Salesforce. Through this agreement, organizations will have access to talent intelligence solutions on Agentforce, an AI skills-powered Salesforce enhanced community, and improved agent-to-agent communication – with Eightfold being one of the early partners to offer a Model Context Protocol (MCP) Server that will be on AgentExchange. Why This Matters, NowThe World Economic Forum 2025 Future o ...
PTOP Signs LOI with INS Digital Intelligence to Launch New AI Division and Gives Update on Reverse
Globenewswire· 2025-09-30 22:00
CAMBRIDGE, Mass., Sept. 30, 2025 (GLOBE NEWSWIRE) -- Peer to Peer Network, Inc. (OTC: PTOPD) (“PTOP” or the “Company”) today announced that it has signed a Letter of Intent (LOI) with INS Digital Intelligence LLC (“INS”), led by AI product development specialist Derek McCarthy, to jointly establish a new AI-focused division within PTOP. Derek McCarthy and Family The collaboration will leverage the combined expertise of PTOP and INS Digital Intelligence to develop proprietary artificial intelligence solutio ...
Sudden acceleration, not a bubble, is the AI story that investors are missing, says this top researcher
Yahoo Finance· 2025-09-30 21:50
Next year may see a big leap for AI chatbots like ChatGPT, says a top researcher. - sebastien bozon/Agence France-Presse/Getty Images While Wall Street engages in continued debate about an AI bubble, a rather impressive new AI coding model just dropped on the world — Claude Sonnet 4.5. Give it any task and it will work on that for more than 30 hours. Parent startup and AI researcher Anthropic, of which Amazon AMZN is an investor, has declared it the best coding model in the world, with many tech enthusia ...
AI浪潮下的Agent突围:供应链优化如何打通数据孤岛?
21世纪经济报道· 2025-09-30 21:49
AI应用工艺。 事实上,单个企业的智能体,多数时候只是单点优化,而行业需要的是全链条协同智能,从而释放供应 链的最大价值。 链接信息孤岛 MIT2025年8月发布的调研报告显示,尽管90%的企业员工会高频使用通用大模型处理岗位工作,但仅 有5%的企业能通过大模型应用,获得可量化的商业回报,95%的企业投入陷入"打水漂"境地。 这种现象在业界被戏谑地定义为"影子AI",它们存在于企业运作中,但却难以追踪其实际价值。这种现 象的核心症结在于,通用大模型与企业实际业务需求脱节,无法完成从 "提供思路" 到 "解决问题" 的转 化。 以仓库运营场景为例,通用大模型虽能给出 "优化库存布局""引入自动化设备" 等泛化建议,但企业团 队需自行拆解任务、查阅操作作业程序、收集库存与用工数据,最终还是要依赖人工,才能完成数据分 析与方案落地。 对此,中国服务贸易协会副会长兼秘书长仲泽宇认为,未来构建以服务业、服务贸易、数字贸易为主的 全球供应链体系,需要高度重视数字技术在供应链中的运用,无论是AI还是未来的遥感技术、时空技 术、卫星技术。 另外,他预计,供应链正在成为私域领域的可信大数据风口。过去形成了很多信息孤岛的私域数据 ...
AI进化速递丨智元在无锡开机器人体验中心
第一财经· 2025-09-30 20:55
②智元在无锡开机器人体验中心,门票128元; ③特斯拉第三代人形机器人将于明年开始量产; 智谱GLM-4.6发布,寒武纪、摩尔线程已完成适配;智元在无锡开机器人体验中心,门票128元;特斯 拉第三代人形机器人将于明年开始量产。 ①智谱GLM-4.6发布,寒武纪、摩尔线程已完成适配; ④蚂蚁开源万亿参数推理大模型; ⑤豆包大模型1.6-vision正式发布。 ...
Surging AI Momentum Showcases Investment Opportunities
Etftrends· 2025-09-30 20:46
Even as some of the largest tech companies have continued to pour hundreds of billions of dollars into scaling up their AI infrastructure, some investors may be skeptical about AI's practical utility and broader adoption. After all, is artificial intelligence being used enough to justify all this investment? New evidence shows just how much artificial intelligence consumption has risen over the past year. Recent research from Alger examined the amount of AI tokens being consumed on a weekly basis. In layma ...
ChatGPT架构师,刚发布了最新研究成果
量子位· 2025-09-30 20:22
研究核心观点 - Thinking Machines发布第三篇研究博客,核心作者为OpenAI联创John Schulman,OpenAI前CTO Mira Murati为其转发站台[1] - 研究证实LoRA参数高效微调方法在抓准关键细节后,不仅能与全量微调拥有相同的样本效率,还能达到一样的最终性能[7] - 研究给出了大幅降低LoRA调参难度的简化方案[3][22] 研究背景与问题 - 当前主流大模型参数达万亿级别,预训练数据达数十万亿token,但下游任务通常只需小数据集且聚焦特定领域[6] - 全量微调更新所有参数会导致资源浪费严重,而LoRA作为参数高效微调方法,通过低秩矩阵捕捉微调信息,但始终面临能否追上全量微调性能的争议[7] 核心研究发现 - 在中小数据集微调场景下,高秩LoRA(如秩512)的学习曲线与全量微调几乎完全重合,损失值均随训练步数呈对数线性下降[9][11] - 仅在数据集规模远超LoRA自身容量的极端情况下,其训练效率才会出现下滑,但这种情况在多数后训练场景中极少出现[11] - 在数学推理类强化学习任务中,即便将LoRA的秩降低至1,其性能依旧能与全量微调持平,因为强化学习每轮训练仅需依靠scalar优势函数吸收O(1)比特信息,秩1 LoRA的参数容量已满足需求[13][14] LoRA应用优化策略 - LoRA应用需实现全层覆盖而非仅聚焦注意力层,因为模型梯度的主导权掌握在参数数量更多的层手中[15][21] - 仅作用于注意力层的LoRA表现明显落后,即便提升秩来匹配参数量,性能差距依然显著[16][17] - 当LoRA应用于模型所有层(尤其是参数占比最高的MLP层与MoE层)时,性能得到极大提升,仅在MLP层单独应用LoRA效果就与组合应用相差无几[19] 调参简化方案 - LoRA的最优学习率存在明确规律,始终约为全量微调的10倍,这一比例在14个不同模型的测试中几乎保持恒定[12][22] - 得益于1/r缩放因子的作用,不同秩LoRA的最优学习率差异极小,在秩4至秩512范围内变化幅度不足2倍,短期训练任务中甚至可忽略秩对最优学习率的影响[22] - LoRA的4个潜在超参数中有2个属于冗余参数,实际调试只需重点关注"初始更新规模"与"A矩阵偏离初始状态的步数"两个维度,这将调参难度降低了一半[25][26] 作者背景 - 研究核心作者John Schulman为OpenAI联创,在OpenAI工作9年期间领导了从GPT-3.5到GPT-4o的一系列对齐/后训练工作,被誉为ChatGPT架构师[27][28] - John Schulman学术引用近14万,其代表作PPO算法是ChatGPT核心技术RLHF中选用的强化学习算法[29] - John Schulman现以首席科学家身份加入Thinking Machines,旨在回归核心技术领域[30]
首次实现第一视角视频与人体动作同步生成!新框架攻克视角-动作对齐两大技术壁垒
量子位· 2025-09-30 20:22
技术突破 - 首次实现第一视角视频与人体动作的联合生成,攻克了视角-动作对齐与因果耦合两大核心瓶颈[1][2][4] - 提出基于扩散模型的框架,通过三模态联合生成框架实现文本、视频、动作的同步生成[4][12] - 采用异步扩散训练策略,为视频与动作分支设置独立采样时间步,适配不同模态演化节奏[23] 核心创新 - 创新性地提出以头部为中心的动作表征,直接将动作锚定在头部关节,使头部姿态回归误差显著降低[19][20][26] - 引入控制论启发的交互机制,在注意力机制中加入结构化掩码,实现视频与动作间的双向因果交互[20][21] - 采用三阶段训练范式,包括动作VAE预训练、文本-动作预训练和三模态联合训练,兼顾效率与性能[27] 性能表现 - 在9项评估指标上全面超越基线模型VidMLD,其中视角对齐误差从1.28米降低至0.67米,降幅达48%[32][33] - 手部可见一致性指标HandScore从0.36提升至0.81,增幅达125%[32][33] - 消融实验证实三大核心设计缺一不可,移除任一创新点均导致模型性能明显下降[34] 应用前景 - 技术为可穿戴计算、AR内容创作及具身智能打开了新的落地入口[2][34] - 生成的视频可通过3D高斯点渲染技术提升到三维场景中,支持多种生成模式[5][24][29][30]