高频因子选股策略
搜索文档
高频因子跟踪:Gemini3 Flash等大模型的金融文本分析能力测评
国金证券· 2025-12-30 17:02
量化模型与因子总结 量化因子与构建方式 1. **因子名称**:价格区间因子[2][3] * **因子构建思路**:衡量股票在日内不同价格区间成交的活跃程度,以体现投资者对未来走势的预期[3] * **因子具体构建过程**:该因子由三个细分因子按特定权重合成[33][36] 1. **高价格80%区间成交量因子 (VH80TAW)**:计算股票在日内高价格(前80%)区间的总成交量,该因子值与未来收益呈负相关[33] 2. **高价格80%区间成交笔数因子 (MIH80TAW)**:计算股票在日内高价格(前80%)区间的总成交笔数,该因子值与未来收益呈负相关[33] 3. **低价格10%区间每笔成交量因子 (VPML10TAW)**:计算股票在日内低价格(后10%)区间的平均每笔成交量,该因子值与未来收益呈正相关[33] 4. **合成**:将上述三个细分因子按权重(VH80TAW: 25%, MIH80TAW: 25%, VPML10TAW: 50%)进行合成[36] 5. **中性化处理**:对合成后的因子进行行业和市值中性化处理,得到最终的价格区间因子[32][36] 2. **因子名称**:量价背离因子[2][3] * **因子构建思路**:衡量股票价格与成交量的相关性,相关性越低,未来上涨的可能性越高[3] * **因子具体构建过程**:该因子由两个衡量价格与成交量相关性的细分因子等权合成[40] 1. **价格与成交笔数相关性因子 (CorrPM)**:计算高频快照数据中价格与成交笔数的相关性[40] 2. **价格与成交量相关性因子 (CorrPV)**:计算高频快照数据中价格与成交量的相关性[40] 3. **合成**:对上述两个细分因子进行等权合成[40][42] 4. **中性化处理**:对合成后的因子进行行业和市值中性化处理,得到最终的量价背离因子[32][42] 3. **因子名称**:遗憾规避因子[2][3] * **因子构建思路**:基于行为金融学的遗憾规避理论,考察投资者卖出股票后股价反弹的比例和程度,以捕捉情绪对预期收益的影响[3][46] * **因子具体构建过程**:该因子由两个细分因子等权合成[46][51] 1. **卖出反弹占比因子 (LCVOLESW)**:利用逐笔成交数据区分主动卖单,计算卖出后股价反弹的交易占比[46] 2. **卖出反弹偏离因子 (LCPESW)**:利用逐笔成交数据区分主动卖单,计算卖出后股价反弹的偏离程度[46] 3. **合成**:对上述两个细分因子进行等权合成[51] 4. **中性化处理**:对合成后的因子进行行业和市值中性化处理,得到最终的遗憾规避因子[32][51] 4. **因子名称**:斜率凸性因子[2][3] * **因子构建思路**:从投资者耐心与供求关系弹性的角度出发,利用限价订单簿数据刻画委托量和委托价的关系(斜率和凸性)对预期收益的影响[3][54] * **因子具体构建过程**:该因子由两个细分因子等权合成[54][58] 1. **低档斜率因子 (Slope_abl)**:基于订单簿低档位的累计委托量和委托价计算买方或卖方的订单簿斜率[54] 2. **高档位卖方凸性因子 (Slope_alh)**:基于订单簿高档位的累计委托量和委托价计算卖方的订单簿凸性[54] 3. **合成**:对上述两个细分因子进行等权合成[58] 4. **中性化处理**:对合成后的因子进行行业和市值中性化处理,得到最终的斜率凸性因子[58] 5. **因子名称**:高频“金”组合合成因子[3] * **因子构建思路**:将多个表现较好的高频因子结合,以构建更稳健的选股信号[3] * **因子具体构建过程**:将价格区间因子、量价背离因子、遗憾规避因子三类高频因子进行等权合成[3][62] 6. **因子名称**:高频&基本面共振组合合成因子[4] * **因子构建思路**:将相关性较低的高频因子与有效的基本面因子结合,以提升多因子组合的表现[4][67] * **因子具体构建过程**:将价格区间因子、量价背离因子、遗憾规避因子三类高频因子,与一致预期、成长、技术三个基本面因子进行等权合成[4][67] 因子的回测效果 (注:以下因子表现均为在中证1000指数成分股内,进行行业市值中性化后的测试结果,基准为所有成分股等权配置[32]) 1. **价格区间因子**[32][36][39] * 上周多头超额收益率:-1.00%[32] * 本月以来多头超额收益率:-0.90%[32] * 今年以来多头超额收益率:4.56%[32] 2. **量价背离因子**[32][40][44] * 上周多头超额收益率:-2.21%[32] * 本月以来多头超额收益率:-1.48%[32] * 今年以来多头超额收益率:2.99%[32] 3. **遗憾规避因子**[32][46][53] * 上周多头超额收益率:0.45%[32] * 本月以来多头超额收益率:1.47%[32] * 今年以来多头超额收益率:0.42%[32] 4. **斜率凸性因子**[2][56][61] * 上周多头超额收益率:0.66%[2] * 本月以来多头超额收益率:0.25%[2] * 今年以来多头超额收益率:-5.54%[2] 量化模型与构建方式 1. **模型名称**:高频“金”组合中证1000指数增强策略[3][62] * **模型构建思路**:基于合成的高频“金”组合因子构建指数增强策略,以获取稳定的超额收益[3][62] * **模型具体构建过程**: 1. **因子合成**:如前述,将三类高频因子等权合成为高频“金”组合因子[3][62] 2. **选股与加权**:基于该因子值在中证1000成分股内选股并构建投资组合[62] 3. **策略设置**:调仓频率为周度,手续费率为单边千分之二,基准为中证1000指数[62] 4. **优化机制**:加入换手率缓冲机制以降低调仓成本[62] 2. **模型名称**:高频&基本面共振组合中证1000指数增强策略[4][67] * **模型构建思路**:将高频因子与基本面因子结合构建指数增强策略,旨在获得更优的风险调整后收益[4][67] * **模型具体构建过程**: 1. **因子合成**:如前述,将三类高频因子与三个基本面因子等权合成为共振组合因子[4][67] 2. **选股与加权**:基于该因子值在中证1000成分股内选股并构建投资组合[67] 3. **策略设置**:调仓频率为周度,手续费率为单边千分之二,基准为中证1000指数[67] 模型的回测效果 1. **高频“金”组合中证1000指数增强策略**[3][63][66] * 年化超额收益率:9.85%[3][63] * 跟踪误差:4.32%[63] * 信息比率(IR):2.28[63] * 超额最大回撤:6.04%[3][63] * 上周超额收益:-2.06%[3][66] * 本月以来超额收益:-1.64%[3][66] * 今年以来超额收益:5.26%[3][66] 2. **高频&基本面共振组合中证1000指数增强策略**[4][69][71] * 年化超额收益率:13.93%[4][69] * 跟踪误差:4.20%[69] * 信息比率(IR):3.31[69] * 超额最大回撤:4.52%[4][69] * 上周超额收益:-1.37%[4][71] * 本月以来超额收益:-1.33%[4][71] * 今年以来超额收益:5.24%[4][71]
高频因子跟踪
国金证券· 2025-10-20 19:49
量化因子与构建方式 1. 价格区间因子 **因子构建思路**:衡量股票在日内不同价格区间成交的活跃程度,以体现投资者对未来走势的预期[3] **因子具体构建过程**:利用三秒快照数据,分析不同价格区间的成交行为[12] - 高价格80%区间成交量因子(VH80TAW):计算日内高价格80%区间的成交量,与未来收益呈负相关[12] - 高价格80%区间成交笔数因子(MIH80TAW):计算日内高价格80%区间的成交笔数,与未来收益呈负相关[12] - 低价格10%区间每笔成交量因子(VPML10TAW):计算日内低价格10%区间的平均每笔成交量,与未来收益呈正相关[12] - 合成方法:以25%、25%和50%的权重对三个细分因子进行合成,然后进行行业市值中性化处理[14] **因子评价**:展现出了较强的预测效果,今年以来表现比较稳定[3] 2. 量价背离因子 **因子构建思路**:衡量股票价格与成交量的相关性,相关性越低,未来上涨可能性越高[3] **因子具体构建过程**:利用高频快照数据计算价格与成交量的相关关系[22] - 价格与成交笔数相关性因子(CorrPM):计算价格与成交笔数的相关性[22] - 价格与成交量相关性因子(CorrPV):计算价格与成交量的相关性[22] - 合成方法:对两个细分因子进行等权合成,然后进行行业市值中性化处理[23] **因子评价**:近几年表现一直不太稳定,多空净值曲线趋近走平[3] 3. 遗憾规避因子 **因子构建思路**:通过考察股票当天被投资者卖出后反弹的比例和程度,体现投资者的遗憾规避情绪对股价预期收益的影响[3] **因子具体构建过程**:利用逐笔成交数据区分主动买卖方向,加入小单和尾盘限制[26] - 卖出反弹占比因子(LCVOLESW):衡量卖出后股价反弹的占比[26] - 卖出反弹偏离因子(LCPESW):衡量卖出后股价反弹的程度[26] - 合成方法:对两个细分因子进行等权合成,然后进行行业市值中性化处理[32] **因子评价**:样本外超额收益稳定,表明A股投资者的遗憾规避情绪会显著影响股价预期收益[3] 4. 斜率凸性因子 **因子构建思路**:从投资者耐心与供求关系弹性角度出发,刻画订单簿的斜率和凸性对预期收益的影响[3] **因子具体构建过程**:利用限价订单簿的委托量和委托价信息计算斜率[36] - 低档斜率因子(Slope_abl):计算低档位的订单簿斜率[36] - 高档位卖方凸性因子(Slope_alh):计算高档位的卖方凸性[36] - 合成方法:对两个细分因子进行等权合成,然后进行行业市值中性化处理[41] **因子评价**:因子自2016年以来收益保持平稳趋势[43] 量化模型与构建方式 1. 高频"金"组合中证1000指数增强策略 **模型构建思路**:将三类高频因子等权合成构建指数增强策略[3] **模型具体构建过程**: - 因子合成:将价格区间因子、量价背离因子、遗憾规避因子进行等权合成[3] - 调仓频率:周度调仓[44] - 手续费:单边千分之二[44] - 风险控制:加入换手率缓冲机制降低调仓成本[44] - 基准:中证1000指数[44] **模型评价**:在样本外表现出色,有较强的超额收益水平[47] 2. 高频&基本面共振组合中证1000指数增强策略 **模型构建思路**:将高频因子与有效的基本面因子结合提升多因子投资组合表现[48] **模型具体构建过程**: - 因子构成:高频因子(价格区间、量价背离、遗憾规避) + 基本面因子(一致预期、成长、技术因子)[48] - 合成方法:等权合成[48] - 调仓频率:周度调仓[48] - 基准:中证1000指数[48] **模型评价**:各项业绩指标均有提升,样本外表现稳定,有较强的超额收益水平[50] 因子的回测效果 1. 价格区间因子 - 上周多头超额收益率:0.28%[2][13] - 本月以来多头超额收益率:-0.41%[2][13] - 今年以来多头超额收益率:4.70%[2][13] - 上周多空收益率:-0.42%[13] - 本月以来多空收益率:-0.60%[13] - 今年以来多空收益率:13.53%[13] 2. 量价背离因子 - 上周多头超额收益率:0.18%[2][13] - 本月以来多头超额收益率:-1.47%[2][13] - 今年以来多头超额收益率:5.73%[2][13] - 上周多空收益率:1.82%[13] - 本月以来多空收益率:0.50%[13] - 今年以来多空收益率:15.99%[13] 3. 遗憾规避因子 - 上周多头超额收益率:-0.86%[2][13] - 本月以来多头超额收益率:-1.21%[2][13] - 今年以来多头超额收益率:1.04%[2][13] - 上周多空收益率:0.73%[13] - 本月以来多空收益率:1.04%[13] - 今年以来多空收益率:15.54%[13] 4. 斜率凸性因子 - 上周多头超额收益率:0.96%[2] - 本月以来多头超额收益率:0.63%[2] - 今年以来多头超额收益率:-7.40%[2] 模型的回测效果 1. 高频"金"组合中证1000指数增强策略 - 年化收益率:9.31%[44] - 年化波动率:23.97%[44] - Sharpe比率:0.39[44] - 最大回撤率:47.77%[44] - 双边换手率(周度):14.66%[44] - 年化超额收益率:10.20%[3][44] - 跟踪误差:4.28%[44] - 信息比率:2.38[44] - 超额最大回撤:6.04%[3][44] - 上周超额收益:0.80%[3] - 本月以来超额收益:0.83%[3] - 今年以来超额收益:6.58%[3] 2. 高频&基本面共振组合中证1000指数增强策略 - 年化收益率:13.67%[50] - 年化波动率:23.59%[50] - Sharpe比率:0.58[50] - 最大回撤率:39.60%[50] - 双边换手率(周度):22.54%[50] - 年化超额收益率:14.49%[4][50] - 跟踪误差:4.19%[50] - 信息比率:3.46[50] - 超额最大回撤:4.52%[4][50] - 上周超额收益:1.14%[4] - 本月以来超额收益:1.22%[4] - 今年以来超额收益:7.66%[4]
高频因子跟踪:上周遗憾规避因子表现优异
国金证券· 2025-05-12 22:17
报告核心观点 报告对ETF轮动因子、高频因子进行跟踪测试,并构建相关指数增强策略,各因子和策略在样本外有不同表现,部分近期表现优异,还给出本周建议关注的ETF及策略持仓列表 [3][4][5] 各部分总结 ETF轮动策略跟踪 ETF轮动因子及策略近期表现 - 使用GBDT+NN机器学习因子构建周度调仓的ETF轮动策略,样本外整体表现良好 [13] - 上周因子IC值44.48%,多头超额收益率0.73% [14] - 考虑手续费,以沪深300指数为基准回测,策略年化超额收益率11.88%,信息比率0.69,超额最大回撤17.31% [15][17] - 上周超额收益率0.20%,本月以来超额收益率1.64%,今年以来超额收益率0.35% [18] 本周建议关注ETF - 本周ETF持仓包括证券ETF龙头、红利低波ETF等多只ETF [21][22] 高频因子超额收益概览 - 过去一周,各类高频因子多头组合在中证1000指数成分股中表现稳定,价格区间类因子多空收益率-2.07%,多头超额收益率-1.17%;量价背离因子多空收益率-1.18%,多头超额收益率-0.22%;遗憾规避因子多空收益率1.65%,多头超额收益率0.75% [22] 各类高频因子近期表现跟踪 高频价格区间因子 - 高价格区间成交笔数与成交量因子与股票未来收益负相关,低价格区间平均每笔成交量因子与股票未来收益正相关 [25] - 高价格80%区间成交量因子、高价格80%区间成交笔数因子和低价格10%区间每笔成交量因子周频调仓表现较好 [25] - 三个细分因子上周多空收益率分别为-1.73%、-1.56%、0.14%,多头超额收益率分别为-1.17%、-1.26%、0.32% [26] - 合成后价格区间因子样本外表现出色,超额净值曲线稳定向上 [28] 高频量价背离因子 - 量价背离时,股价未来上涨可能性高;量价趋同时,股价未来下跌可能性高 [31] - 价格与成交笔数的相关性和价格与成交量的相关性周频调仓表现较好 [31] - 两个细分因子上周多空收益率分别为-0.69%、-1.05%,多头超额收益率分别为-0.33%、-0.43% [31] - 合成后量价背离因子自2020年以来收益呈下降趋势,今年以来表现良好 [36] 遗憾规避因子 - 利用投资者遗憾规避情绪可构造有效选股因子 [37] - 卖出反弹占比因子和卖出反弹偏离因子周频表现较好 [37] - 两个细分因子上周多空收益率分别为1.67%、0.70%,多头超额收益率分别为0.88%、0.55% [40] - 合成后遗憾规避因子收益表现整体平稳向上,今年以来超额收益0.27% [44] 斜率凸性因子 - 用委托价和累计委托量计算买卖双方订单簿斜率,构建斜率凸性因子 [45] - 低档斜率因子和高档位卖方凸性因子周频调仓近期表现波动 [45] - 两个细分因子上周多空收益率分别为-0.75%、-0.50%,多头超额收益率分别为-0.34%、-0.88% [47] - 合成后斜率凸性因子自2016年以来收益平稳,样本外表现平淡 [48] 基于基本面因子与高频因子构建的中证1000指数增强策略表现 高频"金"组合中证1000指数增强策略 - 三类高频因子等权合成构建策略,周度调仓,加入换手率缓冲机制 [52] - 策略年化超额收益率10.62%,信息比率2.52,超额最大回撤6.04% [52] - 上周超额收益0.19%,本月以来超额收益0.19%,今年以来超额收益5.87% [55] 高频&基本面共振组合中证1000指数增强策略 - 基本面因子与高频因子结合构建策略,基本面因子包括一致预期、成长和技术因子 [57] - 策略年化超额收益率14.76%,信息比率3.57,超额最大回撤4.52% [59] - 上周超额收益-0.70%,本月以来超额收益-0.70%,今年以来超额收益3.74% [60] 附录 - 高频"金"组合中证1000指数增强策略本周持仓包含新媒股份、中望软件等多只股票 [64][65] - 高频&基本面共振组合中证1000指数增强策略本周持仓包含新媒股份、禾丰股份等多只股票 [67][68]