Workflow
RoboOS
icon
搜索文档
具身智能商业化大单“含金量”几何?从业者也看不明白
南方都市报· 2025-11-23 13:50
行业商业化进展与潜在风险 - 今年下半年以来,行业连续宣布亿元级商业化大单,营造出乐观的落地前景 [1] - 有从业者对部分订单背后的虚实表示质疑,提出其是否解决实际问题、形成商业闭环、创造真实场景价值的疑问 [1] - 机器人厂商的量产可能并非由真实需求驱动,而是由伪需求或示范性验证的小需求形成,存在热度退去后场景方停止续购的风险 [1] - 众多公司集中涌入工业和物流领域的搬运、分拣、安防,以及商用领域的导览、导购和文娱表演等应用方向 [3] 行业面临的核心挑战 - 硬件存在关节发热、关节扭矩密度低、电池能量密度低、端侧算力有限等问题,尚未达到真正量产可用阶段 [4] - 智源研究院采购的10台某品牌人形机器人,在一两个月内损坏了五台,硬件稳定性阻碍其进入真实工业及家庭场景 [4] - 硬件难题被视为“线性瓶颈”,可持续投入以取得进步,但零部件迭代可能触及物理极限 [4] - 软件瓶颈属于“非线性”,具身智能模型的“ChatGPT时刻”难以预测,可能短则两三年,长则十年之久 [4] 技术发展路径与数据之争 - 业内爆发并持续着真机数据与仿真数据的路线之争 [4] - 有观点认为数据质量优先于数据总量,应坚持以物理世界真实数据为主 [5] - 另一观点则认为仿真能提供丰富的物理交互基础,是合成数据的使命,可用于习得复杂身体控制并为真实世界部署提供基础控制器 [5] - 具身智能模型训练成本高企,现阶段订单量不足以支撑创业公司进行高风险的模型训练尝试 [5] 可行的发展策略与建议 - 短期内不应对人形机器人的通用能力和泛化能力抱有过高期待 [6] - 更现实的路径是先用小的专用具身智能模型进行场景化落地,在特定场景和任务上做到99%以上的准确率,并保证硬件长时间稳定运行 [6] - 建议机器人公司先活下来,熬过可能出现的寒冬 [6] - 建议政府层面更多从政策上给予支持与引导,而非直接提需求,因为真实需求始终来自企业和用户侧 [1]
100亿都不够烧!机器人公司CEO们给出新判断:具身智能不能再照搬LLM
搜狐财经· 2025-11-22 10:41
智源研究院技术进展 - 发布原生多模态世界模型Emu3 5,训练数据从15年视频扩展至790年,参数规模从8B提升至34B,并引入自研DiDA技术使视频、图像生成速度提升至与Diffusion、DiT类模型相当 [5] - 构建跨异构本体具身智能体系,包括RoboBrain(具身大脑)、RoboOS(跨本体操作系统)与基于VLA的RoboBrain-0,已在多款不同形态机器人本体上部署,能完成导览、导购到复杂交互任务 [5] - 展示全身控制能力,宇树G1机器人在其控制框架BAAI Thor加持下完成拖动1 4吨汽车的实验 [5] 行业核心议题讨论:模型与架构 - 世界模型需从海量视频中学习,面向具身智能所需的“下一时空状态预测”,而非语言主导的“下一个Token预测”,且必须建立在大量属于机器人的数据之上 [5][7] - 具身智能未来可能需要一套“先行动、再视觉、最后语言”的具身原生结构,以行动与感知为核心,而非沿用当下“大模型的语言中心范式” [10] - 具身智能的最终“大模型”并非单体模型,而是VLA+世界模型+RL的闭环系统 [12] 行业核心议题讨论:数据来源与使用 - 机器人必须在真实场景中学习真实性、多样性和规模化,但仿真是当前更现实的突破口,许多底层控制能力如行走、跳跃等全身控制及灵巧手操作需在模拟器中完成,真实世界仅做微调 [15] - 视频数据被视为最容易大规模获取且最接近真实世界的关键数据形式,训练逻辑可类比人类从视频理解世界再到真实交互校正的过程 [15] - 真实与仿真数据会形成螺旋上升关系,先落地采集真实数据,回仿真扩大覆盖,再回真实验证,不同阶段根据任务需求使用不同类型数据 [15] 行业核心议题讨论:资源投入与硬件形态 - 若有100亿元资金推进具身智能,投入优先级集中在顶尖人才吸纳、算力与数据引擎等基础设施,以及打造属于具身智能的模型体系 [17][19][21] - 人形机器人并非具身智能的唯一最终形态,硬件瓶颈问题的核心是场景需求,模型不定义硬件,硬件也不定义模型,场景定义硬件 [22][23] - 具身智能体系应分层,上层大模型可跨本体复用,但贴近执行的小脑层模型需随硬件结构细调,同一模型部署到不同本体上未必最优 [23]