海豚平台
搜索文档
货拉拉CTO张浩:AI取胜在于“应用场”,非基础模型
财经网· 2025-12-01 14:05
公司AI战略核心观点 - 衡量AI价值的关键在于面向业务场景的应用与平台化建设,而非自建基础大模型[1] - 公司技术路径由打造垂直领域行业大模型转向构建企业级AI基建平台[1] - 未来将持续聚焦场景深耕与平台能力建设,以实现技术向业务价值的转化[3] 公司AI平台建设 - 投入打造三大内部平台:面向业务人员的悟空平台、面向算法开发者的海豚平台、用于模型评测与标注的评测标注平台[1] - 平台旨在将企业数据资产、流程体系与行业经验沉淀为可复用能力[1] - 实现从技术研发到业务应用的全链路支撑[1] 公司AI应用落地成果 - 在安全领域,AI安全防控系统实现危险品运输与违规载人日均风险单量下降30%、风险订单识别提醒率100%[2] - 在研发效能上,AI Coding使用率超90%,研发流程AI渗透率超60%[2] - 针对用户选车痛点,上线“拍货选车”功能,最大单边误差小于10%,平均误差不足10厘米[2] 行业观点与未来方向 - 基础大模型迭代速度极快,具有指数级发展,企业应将有限资源投入应用场景做深和平台做牢[2][3] - 在服务型平台企业中,AI当前主要承担提效、防控与降本的角色,而非替代服务本身[2] - 未来AI应用应向多模态方向推进,进一步提升准确率与优化用户体验[2]
货拉拉CTO张浩:衡量AI价值的关键在于业务场景应用与平台化建设而非自建基础模型
中证网· 2025-12-01 13:47
公司AI战略核心观点 - 衡量AI价值的关键在于面向业务场景的应用与平台化建设,而非自建基础大模型 [1] - 公司技术路径由打造垂直领域行业大模型转向构建企业级AI基建平台 [1] - 将企业数据资产、流程体系与行业经验沉淀为可复用能力,实现技术研发到业务应用的全链路支撑 [1] AI平台建设 - 公司投入打造三大内部平台:面向业务人员的悟空平台、面向算法开发者的海豚平台、用于模型评测与标注的评测标注平台 [1] AI应用场景与成果 - 在安全领域,AI安全防控系统覆盖用户下单到运输完成全流程,实现危险品运输与违规载人日均风险单量下降30%、风险订单识别提醒率100% [2] - 在研发效能上,AI Coding使用率超90%,研发流程AI渗透率超60% [2] - 针对用户选车痛点,上线“拍货选车”功能,AI根据货物照片推荐车型,最大单边误差小于10%,平均误差不足10厘米 [2] 对AI应用的行业观点 - 企业应将有限资源投入到应用场景做深和平台做牢,待基础能力成熟后,自建应用平台将获得更大效率回报 [2] - 在服务型平台企业中,AI当前主要承担提效、防控与降本角色,而非替代服务本身 [2] - 未来AI应用应向多模态方向推进,以提升准确率与优化用户体验 [2]
货拉拉CTO张浩:AI的胜负手,不在基础模型,而在「应用场」
36氪· 2025-11-28 19:13
公司业务与核心战略 - 公司是成立于香港的货运业务撮合平台,2014年进入中国内地,业务覆盖东南亚、南美洲等全球400多个城市和地区,拥有月均近2000万活跃用户和200万活跃司机[7] - 公司的核心能力聚焦于提升运营效率和优化用户体验,以高效撮合货主与司机之间的交易[5][7] - 公司认为AI在O2O服务行业的核心价值是辅助性的,主要用于增收和降本,当前AI的提效能力约为5%-10%,尚无法取代服务本身[30] AI战略制定与路径选择 - 公司参考高盛2023年AI研报的评估方法,通过岗位调研和任务拆解,量化AI提效潜力,并优先选择在业务安全、研发、产品、运营等高数据密度、人力密集型场景落地AI[7] - 初期曾投入资源自研货运行业垂类大模型,但最终调整策略,认识到基础大模型应由行业和大厂提供,而企业自身的核心是打造AI应用平台并整合行业数字资产与业务API[9][10][11] - 基于此认知,公司花费约一年时间构建了三个核心AI平台应用:海豚平台、悟空平台和评测标注平台[11] AI平台应用构建 - 悟空平台面向非专业人士,具备可视化流程编排、0代码智能构建能力,旨在让用户能在5分钟内部署初级企业智能体应用[13][15][16][17] - 海豚平台面向专业算法开发者,提供从数据训练、模型开发到上线维护的全生命周期一站式管理,以提升算法工程师效率[18][19] - 评测标注平台(含标注AB试验平台和拉拉智评)专注于模型上线后的评测环节,通过提升模型PK和AB试验分流的完善度,确保上线结果的可靠性与可重复性[20] AI应用场景与成效 - 在安全防控场景,通过大模型结合语音、图像等非结构化数据进行实时检测与干预,使危险品运输和违规载人的风险订单量下降30%,订单提醒率达到100%[21] - AI Coding已在公司广泛渗透,90%的个体和团队使用,研发流程渗透率达60%,但目前仅提升约10%的整体工作效率,因在复杂业务逻辑和代码检查测试上耗时增加[22][23][24][25] - 通过“拍货选车”功能,利用AI点云分割技术计算货物体积并匹配车型,可在10秒内完成推荐,提升了产品体验[25] - 利用大语言模型构建用户反馈分析器,能高效打标、分类、总结海量反馈,精准捕捉如“开发票效率低”等以往易被忽略的问题[25] - 构建AI产品知识专家,整合公司所有PRD文档、代码仓库等资料,解决了因人员流动和产品迭代导致的知识死角与跨部门协作问题[26] - 通过大语言模型优化短信内容,简化冗长表达,一年节省了约12%的短信成本,并提升了风险合规预判能力[27] AI数字人应用与未来方向 - 公司开发了AI+ASR+LDM+TTS的三维串联机构打造AI数字人业务伙伴,其语义识别准确率达到94%,真人度达到92%,并具备带口音的音色以增强真实感[28][29] - 针对用户情绪,通过大语言模型进行问题改写、场景路由和Multi-Agent方式,提升了问题解决率与准确率[29] - 未来方向包括推进多模态模型方案,实现ASR、LLM、TTS的端到端单模型整合,并打通上下游多个数字人以提升整体企业流程效率[31] - 长期期望通过端到端大模型助手,对智能选车、智能填单及内部运营答疑等环节带来用户体验的显著提效[31]
货拉拉CTO张浩:AI的胜负手,不在基础模型,而在「应用场」
搜狐财经· 2025-11-28 18:30
公司业务概况 - 公司为业务撮合平台,核心是连接货主与司机,业务遍及中国内地、东南亚、南美洲等全球400多个城市和地区 [7] - 平台月均有近2000万活跃用户和200万活跃司机,运营效率和用户体验是核心能力 [7] AI战略定位与路径选择 - 公司参考高盛2023年AI研报评估方法,通过岗位调研和任务拆解量化AI提效潜力,确定生成式AI将率先在高数据密度、人力密集型领域引发生产力革命 [7] - 初期投入资源研发货运行业垂类大模型,但最终调整方向,认识到基础大模型应由行业和大厂提供,而企业自身的AI应用平台建设更为重要 [8][9][10] - 公司花费一年多时间构建了三个核心AI平台:海豚平台(面向算法开发者)、悟空平台(支持非专业人士快速搭建智能体应用)和评测标注平台 [10][14][15] AI平台核心功能 - 悟空平台具备可视化流程编排、0代码智能构建能力,支持通过自然语言构建基本智能体,并建设企业级工具库 [10][13] - 海豚平台为算法工程师提供从数据训练、模型开发到上线维护的全生命周期一站式管理,旨在提升开发效率 [14][15] - 评测标注平台通过标注AB试验平台和拉拉智评等工具,重点提升模型PK和AB试验分流的完善度,确保上线结果可靠可重复 [15] AI具体应用场景与成效 - 在业务安全防控方面,通过大模型结合语音、图像等非结构化数据进行实时检测和干预,使危险品运输和违规载人的风险订单量下降30%,订单提醒率达到100% [16] - AI Coding在个体和团队中的使用率达到90%,研发流程渗透率达60%,但目前估算整体工作效率提升约为10% [17][18][19] - 产品体验创新包括“拍货选车”功能,通过AI点云分割计算货物体积并匹配车型,推荐过程仅需10秒钟 [20] - 利用大语言模型分析用户反馈,能精准捕捉如“开发票效率低”等以往易被忽略的信息 [20] - 构建AI产品知识专家系统,整合公司PRD文档、代码仓库等资料,解决历史知识垃圾和跨部门协作问题 [21] - 通过大语言模型优化短信内容,简化冗长表达,一年节省短信成本约12%,并提升风险合规预测能力 [22] AI数字人应用 - 开发AI+ASR+LDM+TTS三维串联的AI业务伙伴,通过热词运营和声学模型优化,语义识别准确率达94% [23][24] - 通过带口音的音色调整,使AI数字人的真人度达到92%,并利用大语言模型进行问题改写和场景路由,提升问题解决率和准确率 [24] 行业影响与未来展望 - 在当前以服务为主体的O2O行业(如电商、货运),AI的核心作用在于增收和降本,其提效能力被认为尚处于边缘,约在5%-10% [25] - 未来发展方向包括推进多模态模型方案,实现ASR、LLM、TTS的端到端单模型整合,并计划通过多个数字人协同提升整体企业流程效率 [25][26] - 长期期望是通过端到端大模型助手,对智能选车、智能填单以及内部运营、答疑等环节带来更大提效,进一步提升用户体验 [26]