3DGS
搜索文档
最近收到了很多同学关于自驾方向选择的咨询......
自动驾驶之心· 2025-12-19 17:25
自动驾驶领域研究方向与人才需求 - 行业收到大量来自计算机、车辆、自动化和机械方向学生的咨询,显示该领域人才需求旺盛且背景多元 [2] - 对于计算机与自动化背景的学生,行业建议主攻深度学习方向,包括视觉语言模型、端到端自动驾驶和世界模型等前沿领域,这些方向被认为从入门到就业乃至深造均有广阔空间 [2] - 对于机械与车辆工程背景的学生,行业建议可从传统规划与控制、3D高斯泼溅等方向入手,这些方向对算力要求相对较低且更易入门 [2] - 行业指出,新人研究者需要经历大量实践与试错才能形成有价值的创新想法,方法论提升的关键在于广泛阅读论文和积极交流 [2] 前沿与细分技术赛道 - 行业关注的前沿研究方向包括视觉语言模型、端到端自动驾驶、强化学习、3D高斯泼溅和世界模型 [2] - 行业认为开集目标检测、占用网络、小样本/零样本学习等是相对竞争不那么激烈的细分赛道 [2] - 行业提供的论文辅导服务覆盖了广泛的技术方向,包括但不限于端到端、视觉语言模型、世界模型、强化学习、3D目标检测、多传感器融合、3D高斯泼溅、鸟瞰图感知、占用网络、多任务学习、语义分割、轨迹预测、运动规划、扩散模型、流匹配、点云感知、毫米波雷达、单目感知以及车道线/在线高精地图 [3] 学术成果与发表支持服务 - 行业提供的论文辅导服务声称具有很高的中稿率,并已有成果被计算机视觉、人工智能、机器人、自然语言处理等领域的顶级会议和期刊收录,例如CVPR、AAAI、ECCV、CoRL、ICLR、IROS、ICRA、ACL [7] - 服务支持发表的论文级别多样,涵盖自动驾驶顶会/顶刊、中国计算机学会推荐的A/B/C类会议期刊、科学引文索引的一至四区期刊、中科院分区的一至四区期刊、以及工程索引和中文核心期刊 [10] - 服务内容全面,包括论文选题、全流程指导以及实验指导 [6] - 服务范围不仅限于学术论文发表,还扩展至毕业设计论文、申请博士以及竞赛支持 [10] - 服务提供针对不同论文级别的差异化定价 [8]
SIGGRAPH Asia 2025:摩尔线程赢图形顶会3DGS挑战赛大奖,自研LiteGS全面开源
机器之心· 2025-12-17 13:28
文章核心观点 - 摩尔线程在SIGGRAPH Asia 2025的3DGS重建挑战赛中凭借自研的LiteGS技术获得银奖,证明了其在下一代图形渲染技术上的算法实力和软硬件协同能力[1] - 3DGS是一项革命性的3D场景表示与渲染技术,相比传统NeRF,能在保持画质的同时将渲染效率提升数百至上千倍,并被视为具身智能等前沿领域的关键基础技术[4][7] - 摩尔线程通过开源其全栈优化的3DGS基础库LiteGS,旨在推动技术开放协作,其方案在训练效率和模型轻量化上树立了新的性能标杆[18][24][27] 3DGS技术概述与行业意义 - 3DGS以可参数化的3D高斯分布为核心,实现了画质、效率与资源占用的卓越平衡[4] - 该技术为具身智能等需要与真实环境交互的领域提供了高质量、低延迟的三维环境建模支撑,有助于提升路径规划和环境感知能力[7] - 因其对未来图形学技术路线的关键意义,3DGS已成为全球学术界与产业界竞相投入的研究方向[8] SIGGRAPH Asia 2025挑战赛详情 - 竞赛任务极具挑战性,要求参赛者在60秒内,基于存在误差的相机轨迹和终端SLAM点云,完成完整的3DGS高质量重建[10] - 主办方以PSNR(重建质量)与重建速度为综合评价指标进行权威排名[12] - 比赛结果及数据集已向全球公开[13] 摩尔线程参赛表现与技术方案 - 摩尔线程AI团队以“MT-AI”参赛,在重建精度与效率上取得均衡表现,最终获得银奖[16] - 具体比赛数据显示,其方案平均PSNR为27.58,重建耗时34秒,在效率上显著领先多数队伍[17][20] - 公司自主研发的LiteGS基础库实现了从底层GPU系统、中层数据管理到高层算法设计的全链路协同优化[20][21] LiteGS技术的核心优势与性能数据 - 在GPU系统层面,创新提出基于“One Warp Per Tile”原则的“Warp-Based Raster”新范式,大幅降低梯度计算开销[21] - 在数据管理层,引入“聚类-剔除-压缩”流水线,显著提升数据局部性,减少缓存失效[21] - 在算法设计层,采用像素不透明度梯度方差作为致密化判据,精准识别欠拟合区域[21] - 性能表现突出:在达到同等质量时,LiteGS可获得高达10.8倍的训练加速,且参数量减少一半以上[25] - 在相同参数量下,LiteGS的PSNR指标超出主流方案0.2–0.4 dB,训练时间缩短3.8至7倍[29] - 针对轻量化模型,LiteGS仅需原版3DGS约10%的训练时间与20%的参数量,即可实现同等质量[29] 公司的战略布局与后续行动 - 此次获奖是公司准确把握全球技术发展趋势并引领未来图形计算技术方向的战略体现[28] - 公司计划在2025年12月20日至21日的首届MUSA开发者大会上设立技术专题,深入探讨3DGS等图形智能技术如何赋能具身智能等前沿领域[28] - 摩尔线程已将LiteGS在GitHub平台全面开源,以推动三维重建与渲染技术的开放协作与持续演进[27]
做了一份3DGS全栈学习路线图,包含前馈GS......
自动驾驶之心· 2025-12-16 11:16
但3DGS的技术迭代速度远超想象,静态重建3DGS、动态重建4DGS、表面重建2DGS,再到feed-forward 3DGS。很多同学想入门却苦于没有有效的学习路线图: 既要吃透点云处理、深度学习等理论,又要掌握实时渲染、代码实战。 为此自动驾驶之心联合 工业界算法专家 开展了这门 《3DGS理论与算法实战教程》! 我 们花了两个月的时间设计了 一套3DGS的学习路线图,从原理到实战细致展开。全面吃透3DGS技术栈。 早鸟优惠!名额仅限「30名」 讲师介绍 Chris:QS20 硕士,现任某Tier1厂算法专家,目前从事端到端仿真、多模态大模型、世界模型等前沿算法的预研和量产,参与过全球TOP主机厂仿真引擎以及工具 链开发,拥有丰富的三维重建战经验。 点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近30个 方向 学习 路线 特斯拉ICCV的分享吸引了很多小伙伴的关注,里面的3D Gaussian的引入可谓是一大亮点。基本上可以判断特斯拉是基于前馈式GS算法实现的,近期学术界的工 作也相当多,像小米的WorldSplat和清华最新的DGGT等等。3DGS正在自动驾驶焕发又一轮生机。 ...
中游智驾厂商正在快速抢占端到端人才......
自动驾驶之心· 2025-12-15 08:04
行业技术发展趋势 - 智能驾驶领域的技术焦虑正在产业链中游厂商间快速传播[1] - 业内认为,端到端等前沿技术的大规模量产起点将在明年[2] - 当前智驾前沿技术发展放缓,量产方案趋同,L2级智能驾驶正走下沉路线[2] - 随着明年L3法规的进一步推进,中游厂商面临迫切的技术升级压力[2] - 近期许多公司的算法负责人正积极寻求了解端到端、世界模型、VLA、3DGS等前沿技术[2] 市场与量产现状 - 中国二十万以上的乘用车年销量约为700万辆[2] - 头部新势力品牌在此价格区间的销量占比不及三分之一[2] - 已实现端到端技术量产的车型占比更低[2] - 端到端技术的成熟被视为开启更大规模量产的关键[2] - 地平线公司宣布将进军10万级市场,表明高阶智驾正迅速向更多国民车型下沉[2] 技术实施与人才需求 - 端到端自动驾驶不仅仅是一个算法,其落地需要完善的云端与车端基础设施、数据闭环、工程部署、闭环测试、模型优化及平台开发等全套能力[2] - 可以预见,市场对中阶智能驾驶相关岗位的需求将更加旺盛[2] - 端到端和VLA(视觉语言动作模型)领域的招聘需求预计将显著增长[3] 行业培训动态 - 为应对技术升级需求,市场出现了针对端到端和VLA技术的实战培训课程[3] - 相关课程由工业界与学术界的专家联合开展,聚焦量产落地[3] - 课程内容涵盖导航信息应用、强化学习优化、Diffusion和自回归模型量产经验、时空联合规划等核心模块[3] - 另有课程专门梳理BEV感知、大语言模型、扩散模型和强化学习在端到端领域的应用,并设计相关实战项目[6] - 针对VLA领域,有课程从VLM(视觉语言模型)解释器到模块化、一体化及推理增强VLA进行全面梳理,并包含从零搭建模型的大作业[11] - 课程讲师及团队背景雄厚,多来自国内顶级主机厂、Tier1供应商及顶尖高校,拥有丰富的算法研发、预研及量产交付经验[5][8][13][14]
最近Feed-forward GS的工作爆发了
自动驾驶之心· 2025-12-10 08:04
3DGS技术趋势与行业应用 - 特斯拉在ICCV的分享中引入了3D Gaussian Splatting技术,基本可以判断其基于前馈式GS算法实现[2] - 学术界近期涌现大量相关工作,例如小米的WorldSplat和清华最新的DGGT,表明3DGS技术正在自动驾驶领域焕发新一轮生机[2] - 行业普遍共识是引入前馈式GS重建场景,再利用生成技术生成新视角,目前不少公司都在开放HC招聘相关人才[2] - 3DGS技术迭代速度极快,已从静态重建3DGS、动态重建4DGS、表面重建2DGS,发展到前馈式3DGS[4] 3DGS技术课程核心内容 - 课程旨在提供一套系统的3DGS学习路线图,从原理到实战细致展开,全面覆盖3DGS技术栈[4] - 课程讲师为QS20硕士,现任某Tier1厂算法专家,从事端到端仿真、多模态大模型、世界模型等前沿算法预研和量产,拥有丰富的三维重建实战经验[5] - 课程采用离线视频教学,配合VIP群内答疑及三次线上答疑,开课时间为12月1日,预计两个半月结课[15] - 课程面向人群需自备GPU,推荐算力在4090及以上,并具备一定的计算机图形学、视觉重建、概率论、线性代数及Python和PyTorch基础[17] 课程大纲详解 - **第一章:3DGS背景知识**:从计算机图形学基础讲起,涵盖三维空间的隐式/显式表达、渲染管线、光线追踪、辐射场渲染等概念及其与3DGS的联系,并介绍COLMAP、Gsplat等开发工具,设置基于3D Real Car训练模型的小作业[8] - **第二章:3DGS原理和算法**:详细梳理3DGS原理及核心伪代码,讲解动态重建、表面重建、鱼眼重建和光线追踪的经典与最新算法,实战选用英伟达开源的3DGRUT框架[9] - **第三章:自动驾驶3DGS**:聚焦自动驾驶仿真重建,讲解浙大Street Gaussian、上交OmniRe和浙大Hierarchy UGP三篇工作,实战选用学术界和工业界广泛使用的DriveStudio框架[10] - **第四章:3DGS重要研究方向**:探讨COLMAP扩展、深度估计及Relighting等研究方向,分析其工业界服务价值与学术探索意义[11] - **第五章:前馈式3DGS**:梳理前馈式3DGS的发展历程与算法原理,讲解最新的AnySplat和WorldSplat算法工作[12] - **第六章:答疑讨论**:通过线上交流形式,组织讨论3DGS岗位需求、行业痛点及开放性问题[13]
工业界大佬带队!三个月搞定3DGS理论与实战
自动驾驶之心· 2025-12-10 03:00
3DGS技术发展与应用 - 新视角合成的核心目标是通过图像或视频构建可被计算机处理的3D模型,催生了3D建模、虚拟现实、自动驾驶闭环仿真等大量应用 [2] - 早期算法如SfM、MVS受限颇多,2020年NeRF打破僵局但仍面临计算效率和可编辑性差的问题,2023年3DGS一经问世便迅速火爆 [2] - 3DGS技术迭代速度远超想象,已发展出静态重建3DGS、动态重建4DGS、表面重建2DGS,并进一步催生了feed-forward 3DGS以解决per-scene optimization方法不便使用的问题 [4] - 目前3DGS在学术界和工业界都很受欢迎,但入门需要吃透点云处理、深度学习等理论,并掌握实时渲染、代码实战 [4] 课程核心内容与结构 - 课程包含2DGS/3DGS/4DGS的细致讲解,并扩展当下3DGS重要的几个研究课题,最后讲解feed-forward 3DGS,旨在全面吃透3DGS技术栈 [6] - 课程大纲共六章,从背景知识、原理算法到自动驾驶应用、研究方向及前沿feed-forward方法,最后安排答疑讨论 [8][10][11][12][13][14][15] - 课程进度安排为离线视频教学,自12月1日开课,预计两个半月结课,分章节逐步解锁并配合VIP群内答疑及三次线上答疑 [17] 课程具体章节要点 - **第一章:3DGS背景知识**:从计算机图形学基础讲起,涵盖三维空间的隐式/显式表达、渲染管线、光线追踪、辐射场渲染等技术概念及其与3DGS的联系,并介绍COLMAP、Gsplat等开发工具,设计基于3D Real Car训练模型的小作业 [10] - **第二章:3DGS原理和算法**:详细梳理3DGS原理及核心伪代码,讲解动态重建、表面重建、鱼眼重建和光线追踪的经典与最新算法,实战选用英伟达开源的3DGRUT框架 [11] - **第三章:自动驾驶3DGS**:聚焦自动驾驶仿真重建,讲解浙大Street Gaussian、上交OmniRe和浙大Hierarchy UGP三篇工作,实战选用学术界和工业界使用最多的DriveStudio [12] - **第四章:3DGS重要研究方向**:聚焦COLMAP扩展、深度估计及Relighting等研究方向,并分享这些方向如何服务工业界及学术探索的未来走势 [13] - **第五章:Feed-Forward 3DGS**:梳理feed-forward 3DGS的发展历程和算法原理,讲解最新的AnySplat和WorldSplat算法工作 [14] - **第六章:答疑讨论**:通过线上交流形式,组织讨论3DGS岗位需求、行业痛点及开放性问题 [15] 课程面向人群与收获 - 面向人群需自备GPU(推荐算力在4090及以上),并具备一定的计算机图形学基础、视觉重建/NeRF/3DGS技术了解、概率论与线性代数基础、Python和PyTorch语言基础 [19] - 学后收获包括掌握3DGS完善的理论知识及相关技术栈、掌握3DGS算法开发框架并能训练开源模型、与学术界及工业界同行持续交流,对实习、校招、社招均能受益 [19]
中游智驾厂商,正在快速抢占端到端人才......
自动驾驶之心· 2025-12-09 08:03
行业技术发展趋势 - 智能驾驶领域的技术焦虑正在产业链中游厂商间快速传播[1] - 业内认为端到端等前沿技术的大规模量产起点将在明年[2] - 当前智能驾驶前沿技术发展放缓,行业量产方案趋于同质化,L2级智能驾驶正走下沉路线[2] - 随着明年L3级法规的进一步推进,中游厂商面临迫切的技术升级压力[2] - 近期许多公司的算法负责人正积极寻求了解端到端、世界模型、VLA、3DGS等前沿技术[2] 市场现状与规模 - 二十万元以上的乘用车年销量约为700万辆[2] - 头部新势力品牌在该价格区间的销量占比不足三分之一[2] - 搭载端到端量产方案的车型占比则更低[2] - 地平线公司宣布将进军10万元级市场,表明高阶智能驾驶正迅速向更多国民车型下沉[2] 技术落地与产业影响 - 端到端技术不仅仅是一个算法,其成熟落地需要完善的云端与车端基础设施、数据闭环、工程部署、闭环测试、模型优化及平台开发等全套体系支持[2] - 端到端技术的成熟被视为更大规模量产的开端[2] - 可以预见,市场对中阶智能驾驶相关岗位的需求将更加旺盛[2] - 近几个月,行业对端到端和VLA技术的学习与入门需求显著增加[3] 行业培训与人才需求 - 为应对技术升级需求,出现了针对端到端和VLA技术的实战培训课程[3] - 相关课程由工业界与学术界的专家联合开展,聚焦量产落地[3] - 课程内容涵盖导航信息应用、强化学习优化、Diffusion和自回归模型量产经验、时空联合规划等关键模块[3] - 另有课程专注于VLA领域,内容从视觉语言模型作为解释器,覆盖到模块化、一体化及主流的推理增强型VLA[11] - 课程要求参与者具备一定的自动驾驶基础、了解Transformer大模型、强化学习、BEV感知等概念,并拥有Python和PyTorch编程能力[10]
3DGS论文原理与论文源码学习,尽量无痛版
自动驾驶之心· 2025-12-06 11:04
3D高斯泼溅技术趋势与课程内容 - 3D高斯泼溅技术正逐步取代神经辐射场技术,因其技术实现相对更容易[2] - 该技术已获得广泛应用,尤其是前馈式3D高斯泼溅技术近期备受关注[3] 课程结构与学习路径 - 课程共分六章,从背景知识到前沿研究方向系统展开[6][7][8][9][10][11] - 课程采用离线视频教学,配合VIP群答疑与三次线上交流,学习周期预计两个半月[13] - 课程内容设计耗时两个月,旨在提供从理论到实战的完整学习路线图[3] 核心技术模块详解 - **第一章**:涵盖计算机图形学基础,包括三维空间表达、渲染管线及光线追踪,并介绍COLMAP、Gsplat等主流开发工具,附带基于3D Real Car的实践作业[6] - **第二章**:深入讲解3D高斯泼溅原理、核心伪代码及动态重建、表面重建等算法,实战部分使用英伟达开源的3DGRUT框架[7] - **第三章**:聚焦自动驾驶仿真重建,解析Street Gaussian、OmniRe及Hierarchy UGP等关键工作,实战选用DriveStudio框架[8] - **第四章**:探讨COLMAP扩展、深度估计及重照明等重要研究方向,并分析其工业应用与学术前景[9] - **第五章**:梳理前馈式3D高斯泼溅的发展历程与原理,讲解AnySplat和WorldSplat等最新算法[10] 讲师背景与课程特色 - 讲师Chris拥有QS前20大学硕士学位,现任某Tier1厂商算法专家,在端到端仿真、多模态大模型及三维重建领域具备丰富经验[3] - 课程提供与学术界及工业界同行持续交流的机会,旨在帮助学员掌握完整技术栈并提升就业竞争力[15] - 课程设有早鸟优惠,名额仅限20名[3][16] 目标学员与先决条件 - 课程面向希望入门或深化3D高斯泼溅技术的学习者,对实习、校招及社招均有助益[15] - 学员需自备GPU,推荐算力在RTX 4090及以上[15] - 学员需具备计算机图形学基础、对视觉重建等相关技术有一定了解,并掌握Python与PyTorch编程[15]
Feed-forward 3DGS,正在吸引业内更多的关注......
自动驾驶之心· 2025-12-02 08:03
3D高斯泼溅技术趋势与行业动态 - 特斯拉在ICCV的分享引发了行业对3D高斯泼溅技术的广泛关注,其引入被视为一大亮点[2] - 行业普遍共识是引入前馈式3DGS来重建场景并利用生成技术生成新视角,多家公司已开放相关招聘[2] - 3DGS技术迭代速度极快,已从静态重建3DGS发展到动态重建4DGS、表面重建2DGS以及前馈式3DGS[4] 3D高斯泼溅技术课程核心内容 - 课程旨在提供从原理到实战的完整3DGS学习路线图,覆盖点云处理、深度学习理论及实时渲染、代码实战[4] - 课程由工业界算法专家设计,历时两个月,目标是帮助学员全面掌握3DGS技术栈[4] 课程讲师背景 - 讲师Chris拥有QS20高校硕士学位,现任某Tier1厂商算法专家[5] - 其研究方向包括端到端仿真、多模态大模型、世界模型等前沿算法的预研与量产[5] - 曾参与全球顶级主机厂的仿真引擎及工具链开发,具备丰富的三维重建实战经验[5] 课程大纲详解 - **第一章:背景知识**:概述计算机图形学基础,包括三维空间的隐式与显式表达、渲染管线、光线追踪、辐射场渲染,并解释其与3DGS的联系,介绍COLMAP、Gsplat等开发工具,设置基于3D Real Car训练模型及使用SuperSplat移除杂点的作业[8] - **第二章:原理和算法**:详细梳理3DGS原理及核心伪代码,讲解动态重建、表面重建、鱼眼重建和光线追踪的经典与最新算法,实战选用英伟达开源的3DGRUT框架[9] - **第三章:自动驾驶应用**:聚焦自动驾驶仿真重建,重点讲解浙大Street Gaussian、上交OmniRe和浙大Hierarchy UGP三篇工作,实战选用学术界与工业界广泛使用的DriveStudio框架[10] - **第四章:重要研究方向**:探讨COLMAP扩展、深度估计及Relighting等3DGS重要研究方向,分享其在工业界的应用价值与学术探索前景[11] - **第五章:前馈式3DGS**:梳理前馈式3DGS的发展历程与算法原理,讲解最新的AnySplat和WorldSplat算法工作[12] - **第六章:答疑讨论**:通过线上交流形式,组织VIP群内答疑,讨论3DGS岗位需求、行业痛点及开放性问题[13] 课程安排与面向人群 - 课程开课时间为12月1日,预计两个半月结课,采用离线视频教学,辅以VIP群答疑及三次线上答疑[15] - 课程章节按计划解锁:第一章于12月1日,第二章于12月7日,第三章于1月7日,第四章于1月21日,第五章于2月4日[15] - 课程面向具备一定计算机图形学、视觉重建、NeRF、3DGS技术基础,以及概率论、线性代数、Python和PyTorch语言基础的学员[17] - 学员需自备GPU,推荐算力在RTX 4090及以上[17] 学员预期收获 - 掌握3DGS完善的理论知识及相关技术栈[17] - 掌握3DGS算法开发框架,能够训练开源模型[17] - 获得与学术界及工业界同行持续交流的机会[17] - 所学知识对实习、校招、社招均有助益[17]
即将开课!做了一份3DGS的学习路线图,面向初学者......
自动驾驶之心· 2025-11-30 10:02
3DGS技术发展现状与市场需求 - 3DGS技术迭代速度远超想象 已从静态重建3DGS、动态重建4DGS、表面重建2DGS发展到前馈式3DGS[1] - 该领域在学术界和工业界均受到高度重视 但学习者面临缺乏系统学习路径的挑战[1] 课程内容与结构设计 - 课程旨在提供从原理到实战的系统学习路线图 全面覆盖3DGS技术栈[1] - 课程大纲共分六章 从背景知识、核心原理到前沿研究方向及行业应用 循序渐进[3] - 课程采用离线视频教学 配合VIP群答疑及三次线上集中答疑[12] - 课程进度安排明确 自12月1日开课 预计两个半月结课 各章节按计划解锁[12] 核心技术模块详解 - **第一章**:涵盖计算机图形学基础 包括三维空间表达、渲染管线、光线追踪及辐射场渲染 并介绍COLMAP、Gsplat等主流开发工具 附带基于3D Real Car的训练实战作业[5] - **第二章**:深入讲解3DGS原理与核心算法伪代码 覆盖动态重建、表面重建、鱼眼重建及光线追踪的经典与最新算法 实战采用英伟达开源3DGRUT框架[6] - **第三章**:聚焦自动驾驶仿真重建 解析Street Gaussian、OmniRe及Hierarchy UGP三篇核心工作 实战使用学术界与工业界广泛采用的DriveStudio[7] - **第四章**:探讨COLMAP扩展、深度估计及重光照等3DGS重要研究方向 并分析其工业界应用与学术前景[8] - **第五章**:梳理前馈式3DGS的发展历程与算法原理 重点讲解AnySplat和WorldSplat两篇最新算法工作[9] 课程附加价值与面向人群 - 课程包含线上答疑讨论环节 将探讨3DGS岗位需求、行业痛点及开放性问题[10] - 课程面向具备一定计算机图形学、视觉重建、概率论、线性代数及Python/PyTorch基础的学习者[14] - 学习者需自备GPU 推荐算力在4090及以上[14] - 完成课程后 学习者将掌握3DGS完善的理论知识、技术栈及算法开发框架 并能与学界及业界同行持续交流 对实习、校招和社招均有助益[14] 讲师背景与课程推广 - 讲师Chris为QS前20院校硕士 现任某Tier1厂商算法专家 从事端到端仿真、多模态大模型及世界模型等前沿算法预研与量产 拥有丰富的三维重建实战经验[2] - 课程提供早鸟优惠 名额仅限30名[2]