量化择时策略
搜索文档
ETF期权合成标的在期指多头策略中的应用
期货日报网· 2025-07-21 08:53
股指期货与期权市场表现 - 近期期指市场呈现比往年同期更大的贴水,期权市场看跌期权隐含波动率远高于看涨期权隐含波动率 [1] - 这种看跌期权更贵的情形引发市场对未来行情的担忧,但研究通过量化择时策略回测发现这可能反而是做多机会 [1] 升贴水概念及联系 - 股指期货升贴水定义为期货价格与现货价格之差,正值代表升水,负值代表贴水 [2] - 由于分红因素影响,5月至9月股指期货常出现季节性贴水,需参考剔除分红后的年化升贴水率判断真实贴水水平 [2] - ETF期权合成标的价格升贴水通过期权平价公式计算,年化升贴水率更贴近真实市场预期,因其不受分红调整影响 [3] 期权与期指升贴水相关性 - 中证500ETF期权合成标的年化升贴水率与IC当季合约剔除分红后年化升贴水率相关系数高达0.97 [3] - ETF期权合成升贴水可作为股指期货升贴水的有效替代指标,因后者分红预测存在实践难度 [3] 量化择时策略逻辑 - 当ETF合成标的期货升贴水处于历史低位时,市场可能过度悲观,贴水修复趋势下可开仓做多 [4] - 升贴水回归至历史中位数以上且回落趋势时,平仓多单 [4] 策略回测绩效 - 2018年以来对300ETF择时策略年化收益率13.87%,最大回撤-10.82%,显著优于标的指数 [6] - 对IC当月合约择时策略累计收益率142.9%,年化收益率19.05%,最大回撤-17.83%,优于滚动持有策略(年化6.9%,最大回撤-36.56%)[6][11] - 2025年上半年策略绝对收益12.87%,最大回撤仅3.25%,远胜同期中证500指数及股指期货表现 [11] 当前市场应用 - 当前IC和IM当季合约剔除分红后年化升贴水率分别为-8.36%和-11.65%,历史回测显示多头仍具优势 [12]
A股趋势与风格定量观察20250706:短期看好但估值压力渐显,低估板块或需接力
招商证券· 2025-07-06 16:32
根据提供的证券研究报告内容,以下是量化模型与因子的详细总结: --- 量化模型与构建方式 1. 短期量化择时模型 - **模型构建思路**:通过基本面、估值面、情绪面、流动性四个维度的指标综合判断市场短期走势[17][20][22] - **具体构建过程**: 1. **基本面指标**:制造业PMI分位数(44.92%)、中长期贷款余额同比增速分位数(0.00%)、M1同比增速分位数(77.97%)[17] 2. **估值面指标**:A股整体PE分位数(92.80%)、PB分位数(71.05%)[18] 3. **情绪面指标**:Beta离散度分位数(40.68%)、量能情绪分位数(72.70%)、波动率分位数(12.99%)[20] 4. **流动性指标**:货币利率指标分位数(33.90%)、汇率预期指标分位数(40.68%)、融资额分位数(80.81%)[20] 5. 采用加权打分机制,各维度信号权重均衡,最终输出乐观/中性/谨慎信号[22] 2. 成长价值轮动模型 - **模型构建思路**:基于盈利周期、利率周期、信贷周期构建基本面信号,结合估值差和情绪指标进行风格判断[32][34] - **具体构建过程**: 1. **基本面信号**: - 盈利周期斜率=4.17(利好成长) - 利率综合周期水平=9.17(利好价值) - 信贷综合周期变化=-3.33(利好价值)[32] 2. **估值信号**: - 成长价值PE差分位数=15.19% - PB差分位数=34.08%(均利好成长)[32] 3. **情绪信号**: - 换手差分位数=21.01%(利好价值) - 波动差分位数=20.58%(均衡)[32] 4. 采用三级信号加权体系,最终输出成长/价值配置比例[34] 3. 小盘大盘轮动模型 - **模型构建思路**:与成长价值模型类似,但指标调整为小盘大盘特异性指标[36][38] - **具体构建过程**: 1. **基本面信号**: - 盈利周期斜率=4.17(利好小盘) - 利率综合周期水平=9.17(利好大盘) - 信贷综合周期变化=-3.33(利好大盘)[36] 2. **估值信号**: - 小盘大盘PE差分位数=80.60% - PB差分位数=99.59%(均利好大盘)[36] 3. **情绪信号**: - 换手差分位数=54.26%(均衡) - 波动差分位数=83.71%(利好大盘)[36] 4. 采用相同加权机制输出配置建议[38] 4. 四风格轮动模型 - **模型构建思路**:整合成长价值和小盘大盘模型的输出,形成四象限配置建议[31][43] - **具体构建过程**: 1. 接收成长价值模型输出(当前成长0%/价值100%)[32] 2. 接收小盘大盘模型输出(当前小盘50%/大盘50%)[36] 3. 按交叉组合计算配置比例: $$配置比例 = 成长价值权重 \times 小盘大盘权重$$[43] 4. 当前输出:小盘成长12.5%、小盘价值37.5%、大盘成长12.5%、大盘价值37.5%[31] --- 模型的回测效果 1. 短期择时模型 - 年化收益率:16.58%(基准4.26%)[21] - 年化超额收益率:12.32%[21] - 最大回撤:27.70%(基准31.41%)[21] - 夏普比率:0.9889(基准0.2440)[26] - 2024年以来年化收益率:27.68%(基准5.99%)[28] 2. 成长价值轮动模型 - 年化收益率:11.67%(基准6.77%)[33] - 年化超额收益率:4.90%[33] - 最大回撤:43.07%(基准44.13%)[35] - 夏普比率:0.5387(基准0.3231)[35] 3. 小盘大盘轮动模型 - 年化收益率:12.21%(基准6.85%)[37] - 年化超额收益率:5.36%[37] - 最大回撤:50.65%(基准53.70%)[40] - 夏普比率:0.5336(基准0.3210)[40] 4. 四风格轮动模型 - 年化收益率:13.17%(基准7.27%)[43] - 年化超额收益率:5.90%[43] - 最大回撤:47.91%(基准49.07%)[43] - 夏普比率:0.5895(基准0.3432)[43] --- 量化因子与构建方式 1. Beta离散度因子 - **构建思路**:衡量市场局部过热风险[2][20] - **计算方法**: $$Beta离散度 = \frac{1}{n}\sum_{i=1}^n (\beta_i - \bar{\beta})^2$$ 其中$\beta_i$为个股Beta值,$\bar{\beta}$为市场平均Beta[20] - **当前值**:-0.59%(过去5年40.68%分位数)[20] 2. 量能情绪因子 - **构建思路**:结合60日成交量与换手率布林带指标[20] - **计算方法**: $$量能情绪 = \frac{成交量 - 下轨}{上轨 - 下轨} \times 换手率Z值$$[20] - **当前值**:0.30(过去5年72.70%分位数)[20] 3. 估值差分位数因子 - **构建思路**:计算风格间PE/PB估值差的历史分位数[32][36] - **计算方法**: $$估值差分位数 = Percentile(\frac{PE_{风格A}}{PE_{风格B}})[32]$$ - **当前值**: - 成长价值PE差分位数=15.19%[32] - 小盘大盘PE差分位数=80.60%[36] --- 因子的回测效果 (注:报告中未单独披露因子级回测结果) --- 模型评价 1. **短期择时模型**:在多周期测试中表现稳健,尤其在波动控制方面显著优于基准[21][26] 2. **风格轮动模型**:基本面驱动逻辑明确,但2025年出现小幅超额收益回撤[33][37][43] 3. **因子设计**:Beta离散度因子能有效捕捉市场过热风险,量能情绪因子对短期趋势敏感[2][20]