具身学习

搜索文档
通往AGI的快车道?大模型驱动的具身智能革命 | Jinqiu Select
锦秋集· 2025-09-01 23:29
具身智能与大模型融合综述 文章核心观点 - 具身智能被视为实现通用人工智能(AGI)的关键路径,通过"感知-决策-行动"闭环在真实世界中学习并执行复杂任务 [1] - 大模型(如LLM、LVM、LVLM、MLM、VLA)在多模态推理与生成能力上的突破,显著推动了具身智能的演进 [1][7][25] - 世界模型为智能体提供内部环境模拟能力,支持在虚拟空间中演练与优化策略 [1][2][116] - 分层决策与端到端决策成为自主决策的两大核心范式,分别适用于结构化环境与开放动态环境 [6][55][74] Embodied AI系统构成与运行流程 - 系统由物理实体(如人形机器人、智能车辆)和智能体(认知核心)构成,物理实体负责执行动作并接收反馈 [4] - 运行流程包括:从语言指令解读人类意图→主动探索环境→感知多模态元素→执行动作,模仿人类学习范式 [4] - 智能体通过模仿学习从人类演示或视频数据获取技能,通过强化学习整合外部反馈优化策略 [4] 具身智能核心:决策与学习 - 自主决策通过分层范式(分离感知、规划、执行模块)或端到端范式(统一框架集成功能)实现 [6] - 具身学习通过模仿学习(从演示获取技能)和强化学习(迭代优化提升技能)实现持续改进 [6] - 世界模型通过模拟真实世界推理空间,为智能体提供试验和经验积累机会 [6][116] 主流大型模型概览 - Large Language Model (LLM):包括BERT(2018年)、GPT系列(GPT-3参数量达1750亿)、PaLM等,突破zero-shot/few-shot学习能力 [9][10] - Large Vision Model (LVM):ViT将Transformer应用于计算机视觉,DINOv2通过自监督学习提升图像表示质量,SAM支持1100万图像预训练的分割任务 [11] - Large Vision Language Model (LVLM):CLIP通过图文对比学习对齐特征,BLIP-2引入QFormer实现跨模态融合,GPT-4V具备强大多模态推理能力 [12][13] - Multimodal Large Model (MLM):Gemini高效处理文本/图像/音频,DALL·E3通过增强文本编码器改善图像-提示对齐,Sora可生成60秒高质量视频 [14][15] - Vision-Language-Action Model (VLA):RT-2将动作空间离散化为256区间,开源模型(如Octo、TinyVLA)提升计算效率与泛化能力 [16][71] 大型模型通用能力增强技术 - In-Context Learning (ICL):通过精心设计提示实现zero-shot泛化,无需额外训练 [19] - X of Thoughts (XoT):CoT融入中间推理步骤,ToT探索多推理路径,GoT采用图结构实现非线性推理 [20] - Retrieval Augmented Generation (RAG):从外部知识库检索信息,确保响应准确性 [21] - Reinforcement Learning from Human Feedback (RLHF):整合人类偏好优化模型输出 [23] - Model Context Protocol (MCP):提供标准化接口增强模型与外部系统互操作性 [24] 分层自主决策 - 高层规划分为三类:基于结构化语言(LLM生成PDDL或直接作为规划器)、基于自然语言(LLM分解计划)、基于编程语言(指令转可执行代码) [31][33][38] - 底层执行通过传统控制算法(PID、MPC)、LLM驱动学习控制(模仿学习+强化学习)、模块化控制(调用预训练模型如CLIP/SAM)实现 [42][43][45] - 反馈机制包括:大模型自我反思(Re-Prompting重新生成计划)、人类反馈(交互式纠正)、环境反馈(多模态输入转化为语言调整计划) [49][52][54] 端到端自主决策 - VLA模型集成感知、语言理解、规划、动作执行与反馈优化,包含token化与表示、多模态信息融合、动作去token化三个组件 [58][60][62] - RT-2利用ViT进行视觉处理,PaLM集成多模态信息,动作空间离散化为8维度(含256区间) [63] - VLA增强方向:感知能力增强(BYO-VLA滤除视觉噪声)、轨迹动作优化(Octo结合扩散模型)、训练成本降低(π0利用流匹配提升实时性能) [65][70][71] 分层与端到端决策对比 - 分层架构优势:高可解释性、易集成领域知识、模块化设计;劣势:模块协调可能导致次优解、适应性受限 [74] - 端到端架构优势:最小化误差累积、强泛化能力、高效复杂任务处理;劣势:黑箱性质、高计算成本、依赖训练数据 [75] Embodied Learning方法 - 模仿学习:通过最小化专家动作负对数似然学习策略,依赖高质量演示数据 [83][84] - 强化学习:最大化长期累积奖励,PPO/SAC等算法提升稳定性,但需海量探索 [87][89] - 迁移学习:通过KL散度约束迁移源任务策略至目标任务,加速学习但需避免负迁移 [90][91] - 元学习:MAML框架通过少量样本快速适应新任务,但需多样任务预训练数据 [93][94] 大模型赋能的模仿学习 - Diffusion models增强策略:Diffusion Policy通过U-Net生成动作序列,3D-Diffusion利用3D输入提升空间感知 [100][101] - Transformer架构策略:RT-1结合大规模数据集提升泛化,ALOHA实现低成本硬件精确操作,RoboCat实现跨任务快速泛化 [102][103] 大模型赋能的强化学习 - 奖励函数设计:Text2Reward生成可解释Python代码,Eureka利用GPT-4实现全自动优化 [109] - 策略网络构建:Diffusion-QL增强多模态动作分布,Decision Transformer将问题重构为序列建模,LLM(如GLAM)直接生成动作序列 [113][114][115] 世界模型设计与应用 - 设计类型:隐空间世界模型(RSSM)、基于Transformer(IRIS/Genie)、基于扩散(Sora/UniPi)、联合嵌入预测架构(JEPA) [119][122][125][128] - 决策应用:模拟验证(NeBula构建概率信念空间)、知识增强(WKM提供全局先验知识) [133][134] - 具身学习应用:基于模型的强化学习通过模拟状态转换和生成数据提升学习效率 [135]
具身学习专属!硬件结构迭代12版,这款双足机器人平台稳定性提升了300%......
具身智能之心· 2025-07-21 16:24
产品概述 - TRON1是一款专为教育科研设计的一体化研究平台 支持验证人形运动控制、强化学习、VLN任务和VLA任务 [1] - 采用双足、双点足和双轮足"三合一"模块化设计 可快速切换和自由组合 满足不同科研需求 [1] - 一套产品可同步验证点足运动控制、双足人形运动控制和轮式运动控制 实现"买一得三" [1] 产品版本 - 提供基础版本和EDU版本 EDU版本支持二次开发和外设加装 [4] - 支持外接各类操作、感知、语音交互组件及GPU等算力资源 [4] 核心功能 - 作为仿人形步态开发平台 支持人形运控研究和强化学习论证 [6] - EDU版本可外设深度相机或RGB相机 支持目标导航和感知功能开发 [6] - 支持加装机械臂 实现VLA功能验证 包括导航+抓取 [6][11] - 支持C++和Python两种开发语言 降低使用门槛 [6] 技术特性 - 提供完整清晰的URDF模型 Sim2Real差距小 支持NVIDIA Isaac、Mujoco、Gazebo等主流平台 [9] - 可集成激光雷达+深度相机 预调最优安装方案 支持三维建图、重定位、导航及动态避障 [13] - 搭载英伟达NX高算力模组 支持语音唤醒和控制功能 增强拟人感和场景适应力 [18] 硬件配置 - 感知拓展套件配备NVIDIA Ampere架构GPU 提供157 TOPS(稀疏)/78 TOPS(稠密)AI算力 [16] - 采用8核Arm Cortex-A78AE CPU 16GB LPDDR5内存 256GB固态存储 [16] - 激光雷达支持200000点/秒 深度相机分辨率达1280x720 RGB相机分辨率1920x1080 [16] - 标准版和EDU版均采用48V电池供电 续航≥2小时 支持快速换电 [26] - 最大运动速度:双轮足≥5m/s 双足和双点足<1m/s 最大爬坡角度≥15° [26] 应用场景 - 支持复杂地形运动和移动操作+机械臂任务 [20] - 可用于感知模块的建图、定位、测量和重建 [21] - 适用于语音模块+动作执行场景 [22] 开发支持 - 提供完善的SDK和开发文档 支持二次开发 [34] - 支持在线更新软件和模型结构下载 [36] - 提供完整的说明手册和开发指南 实现一键部署 [37] - 自验收后提供1年售后服务 [40]
感觉捕手
36氪· 2025-07-08 17:04
人工智能与感知智能 - 当前AI系统擅长语言处理但缺乏对物理世界的理解 语言大模型通过词序列共现概率捕捉语义 但无法理解三维空间[21][22] - 世界模型是AI突破方向 通过多视角感知重建三维场景 预测遮挡与运动轨迹 实现物理推理和交互[23][24][27] - 语言大模型与世界模型互补 前者解析意图 后者执行物理操作 二者结合实现"说得明白+做得到"的完整智能[32][34] 智能的本质与进化 - 生物智能通过演化形成高效解决方案 如狗本能选择最优路径 棒球手使用凝视启发法接球 体现"具身认知"原理[41][44][45] - 预测性大脑理论认为智能是大脑-身体-环境统一体 通过最小化预测误差实现优化 不依赖显式计算[47][48][49] - 感知智能具有整体性、预测性、具身性和进化性特征 是超越符号操作的高级认知形式[52][53] 教育理念与认知发展 - 具身学习强调通过身体活动与环境互动培养理解力 挑战传统抽象知识灌输模式[78][79][80] - Taste是高维认知能力 表现为对事物本质的直觉判断 如杨振宁对物理学的鉴赏力 乔布斯的跨领域洞察[54][56][62] - 人类智能的独特性可能被AI超越 但具身体验形成的Taste仍是当前核心优势[71][74][81] 技术前沿与行业趋势 - 神经辐射场(NeRF)等3D视觉技术使AI具备场景重建能力 推动世界模型发展[27] - 多模态Transformer整合文本与3D潜变量 实现语义与空间控制的统一[32] - 莫拉维克悖论揭示感知运动智能的复杂性 是世界模型需攻克的核心难关[75][76]