小盘拥挤度
搜索文档
小盘拥挤度偏高
华泰证券· 2026-01-25 18:37
量化模型与构建方式 1. **模型名称:A股技术打分模型**[2][9] * **模型构建思路**:通过挖掘技术面信息来刻画市场状态,并基于对当前状态的理解形成对未来走势的打分观点[2][9] * **模型具体构建过程**: 1. 将“市场状态”细分为价格、量能、波动、趋势和拥挤五个维度[9] 2. 在每个维度内筛选出有效的市场观测指标,共10个[9] 3. 每个指标独立发出多空择时信号[9] 4. 将10个指标的择时信号进行等权投票,综合形成一个介于-1至+1之间的打分结果[9] 5. 根据打分结果制定多空策略:得分 > +0.33时看多,得分在-0.33至+0.33之间时看平,得分 < -0.33时看空[11] 2. **模型名称:红利风格择时模型**[3][16] * **模型构建思路**:结合多个维度的趋势指标,对红利风格(以中证红利指数相对中证全指的收益率衡量)进行多空择时[3][16] * **模型具体构建过程**: 1. 选取三个择时指标: * 中证红利相对中证全指的动量(正向指标)[19] * 10Y-1Y期限利差(负向指标)[19] * 银行间质押式回购成交量(正向指标)[19] 2. 每个指标从趋势维度日频发出信号,取值为0(看平)、+1(看多)、-1(看空)[16] 3. 将三个维度的得分求和,根据其正负性作为最终多空观点[16] 4. 当模型看好红利风格时,全仓持有中证红利指数;不看好时,全仓持有中证全指[16] 3. **模型名称:大小盘风格择时模型**[3][20] * **模型构建思路**:采用基于拥挤度分域的趋势模型进行择时,在不同拥挤度区间采用不同参数的趋势跟踪策略[3][20] * **模型具体构建过程**: 1. **计算拥挤度**:以沪深300指数代表大盘,万得微盘股指数代表小盘[20] * **动量得分**:计算小盘与大盘的10/20/30/40/50/60日动量之差,再计算各窗长动量之差在3.0/3.5/4.0/4.5/5.0年历史分位数的均值。对6个窗长下分位数最高的3个结果取均值作为小盘动量得分,分位数最低的3个结果取均值作为大盘动量得分[25] * **成交量得分**:计算小盘与大盘的10/20/30/40/50/60日成交额之比,再计算各窗长成交额之比在3.0/3.5/4.0/4.5/5.0年历史分位数的均值。对6个窗长下分位数最高的3个结果取均值作为小盘成交量得分,分位数最低的3个结果取均值作为大盘成交量得分[25] * **拥挤度得分**:将小盘(大盘)的动量得分和成交量得分取均值,得到小盘(大盘)拥挤度得分。小盘拥挤度得分大于90%视为触发高拥挤,大盘拥挤度得分小于10%视为触发高拥挤[25] 2. **判断运行区间**:若最近20个交易日中,小盘或大盘风格曾触发过高拥挤,则模型运行在高拥挤区间,否则运行在低拥挤区间[22] 3. **趋势择时**:在高拥挤区间,采用参数较小的双均线模型以应对可能的风格反转;在低拥挤区间,采用参数较大的双均线模型以跟踪中长期趋势[22] 4. **模型名称:遗传规划行业轮动模型**[4][28] * **模型构建思路**:采用遗传规划技术,直接对行业指数的量价、估值等特征进行因子挖掘,不再依赖人工设计打分规则,以构建行业轮动策略[4][32] * **模型具体构建过程**: 1. **因子挖掘**:使用双目标遗传规划(NSGA-II算法)对底层输入变量进行挖掘[32]。底层变量包括收盘价、开盘价、最高价、最低价、成交额、换手率、市净率等原始值、标准化值及分位数[37] 2. **因子评价**:同时使用|IC|(信息系数绝对值)和NDCG@5两个目标来评价因子的分组单调性和多头组表现,旨在挖掘出兼具单调性和优秀多头表现的因子[32] 3. **因子合成**:对挖掘得到的备选因子,结合贪心策略和方差膨胀系数(VIF),将共线性较弱的多个因子合成为行业综合得分[34] 4. **组合构建**:模型周频调仓,每周末选出多因子综合得分最高的五个行业进行等权配置[4][28] 5. **模型名称:中国境内全天候增强组合**[5][39] * **模型构建思路**:采用宏观因子风险预算框架,在四象限风险平价的基础上,基于宏观预期动量的观点主动超配看好的象限,以实现风险分散下的收益增强[5][39] * **模型具体构建过程**: 1. **宏观象限划分与资产选择**:选择增长和通胀两个宏观维度,根据是否超预期划分为四个象限(增长超预期、增长不及预期、通胀超预期、通胀不及预期)。结合定量与定性方式确定各象限适配的资产[42] 2. **象限组合构建与风险度量**:在每个象限内,将适配的资产等权构建子组合,并注重刻画象限的下行风险[42] 3. **风险预算与主动超配**:每月底,根据由“宏观预期动量指标”给出的“象限观点”来调整各象限的风险预算,从而主动超配看好的象限,实现策略增强[42] 量化因子与构建方式 1. **因子名称:技术面观测指标(10个)**[9][14] * **因子构建思路**:从价格、量能、波动、趋势、拥挤五个维度选取有效的技术指标,用于刻画市场状态[9] * **因子具体构建过程**:报告中列出了10个具体指标,包括: * **价格维度**:20日布林带、20日价格乖离率[14] * **量能维度**:20日换手乖离率、60日换手乖离率[14] * **趋势维度**:20日ADX、20日新高天数占比[14] * **波动维度**:60日换手率波动、期权隐含波动率[14] * **拥挤维度**:成分股涨停家数占比5日平均、期权持仓量PCR-5日平均[14] 2. **因子名称:遗传规划挖掘的权重最高因子**[37][38] * **因子构建思路**:通过双目标遗传规划算法从量价数据中自动挖掘出的有效行业轮动因子[37] * **因子具体构建过程**: 1. 在截面上,用全体行业标准化日度成交额对当日跳空缺口开展带有常数项的一元线性回归,取残差,记作变量A[38] 2. 在过去9个交易日中,取标准化日度成交额最大的交易日索引,记作变量B[38] 3. 在过去50个交易日中,将变量A和B开展时序回归取截距项,记作变量C[38] 4. 计算过去45个交易日变量C和标准化月度开盘价的协方差,作为因子值[38] * **因子表达式**:`ts_covariance_torch(ts_regalpha_torch(xs_regres_torch(volume_st, jump_gap), ts_argmax_torch(volume_st, 9), 50), mopen_st, 45)`[37] 模型的回测效果 (回测区间:2010-01-04 至 2026-01-23,除非特别说明) 1. **A股技术打分模型**,年化收益20.78%,年化波动17.32%,最大回撤-23.74%,夏普比率1.20,Calmar比率0.88[15] 2. **红利风格择时模型**(回测区间:2017-01-03 至 2026-01-23),年化收益16.82%,最大回撤-25.52%,夏普比率0.92,Calmar比率0.66,YTD收益7.46%,上周收益1.77%[17] 3. **大小盘风格择时模型**(回测区间:2017-01-03 至 2026-01-23),年化收益28.46%,最大回撤-32.05%,夏普比率1.19,Calmar比率0.89,YTD收益11.85%,上周收益5.25%[26] 4. **遗传规划行业轮动模型**(回测区间:2022-09-30 至 2026-01-23),年化收益32.92%,年化波动17.43%,夏普比率1.89,最大回撤-19.63%,卡玛比率1.68,上周表现3.37%,YTD收益6.80%[31] 5. **中国境内全天候增强组合**(回测区间:2013-12-31 至 2026-01-23),年化收益11.93%,年化波动6.20%,夏普比率1.92,最大回撤-6.30%,卡玛比率1.89,上周表现1.54%,YTD收益3.59%[43] 因子的回测效果 (回测区间:2010-01-04 至 2026-01-23,起始日期不同者已标注) 1. **20日价格乖离率**,年化收益13.24%,年化波动23.52%,最大回撤-42.04%,夏普比率0.56,Calmar比率0.32[15] 2. **布林带**(回测起始:2015-04-09),年化收益14.82%,年化波动24.68%,最大回撤-31.45%,夏普比率0.60,Calmar比率0.47[15] 3. **20日换手率乖离率**,年化收益13.06%,年化波动23.53%,最大回撤-38.79%,夏普比率0.56,Calmar比率0.34[15] 4. **60日换手率乖离率**,年化收益17.89%,年化波动23.52%,最大回撤-29.57%,夏普比率0.76,Calmar比率0.61[15] 5. **20日ADX**,年化收益15.33%,年化波动23.52%,最大回撤-52.27%,夏普比率0.65,Calmar比率0.29[15] 6. **20日创新高占比**,年化收益8.75%,年化波动16.11%,最大回撤-32.44%,夏普比率0.54,Calmar比率0.27[15] 7. **期权隐含波动率**(回测起始:2015-03-30),年化收益11.91%,年化波动24.69%,最大回撤-50.95%,夏普比率0.48,Calmar比率0.23[15] 8. **60日换手率波动**,年化收益11.58%,年化波动14.27%,最大回撤-20.60%,夏普比率0.81,Calmar比率0.56[15] 9. **5日涨停占比平均**,年化收益14.15%,年化波动23.52%,最大回撤-34.98%,夏普比率0.60,Calmar比率0.40[15] 10. **5日持仓量PCR平均**,年化收益4.55%,年化波动23.55%,最大回撤-55.73%,夏普比率0.19,Calmar比率0.08[15]
读研报 | 6月启幕,市场正从哪里找方向?
中泰证券资管· 2025-06-03 17:53
6月市场方向分析 日历效应视角 - 近十年数据显示6月科技成长风格往往进入相对占优窗口 经历5月调整后 科技板块拥挤度 滚动收益差 成交占比等指标显示已到可布局阶段 [2] - 2005年以来历史数据显示大盘成长风格最优 行业风格表现为"成长>周期>消费>稳定 金融" TMT行业胜率和收益率均处于上游 防御性行业如石油石化 建筑装饰 银行 钢铁胜率较低 [2] 性价比视角 - 科技成长板块5月经历调整后性价比凸显 TMT成交额占全A比重回落至27 3%低位 交易结构显示该板块性价比回升至较高区间 [3] - 红利类资产受避险情绪支撑 主要股指期货基差处于深贴水状态 6月资金面偏紧风险偏好易受扰动 美债利率高位震荡利好高股息风格 量化信号体系显示高股息策略发出积极信号 [4] 风险规避视角 - 非国证1000交易占比达历史新高63% 自由流通市值占比仅32% 期货贴水率扩大可能影响中性策略止盈 套利空间增大导致后进入者成本上升 [6] - 中小风格面临多重压力 6月进入半年报预期阶段 程序化交易新规7月实施导致交易活跃度下降 融资余额和个人投资者增量资金有限 小微风格交易集中度达历史高位 监管和资金环境更利好权重 质量类风格 [6] 市场轮动特征 - 5-6月行业轮动较快是传统现象 历史数据显示6月起行业轮动强度通常收敛 市场可能孕育新一轮结构性主线 [7]