聚变堆主机关键系统综合研究设施(CRAFT)
搜索文档
实现1亿度燃烧!“人造太阳”何以照进现实
人民日报· 2025-12-09 09:37
可控核聚变技术进展 - 全超导托卡马克核聚变实验装置(EAST)已实现1亿摄氏度高温下1066秒的稳态运行,其性能超越太阳核心温度 [1] - EAST装置的成功建立在超过19年、累计超过15万次放电实验的基础之上 [1] - 聚变堆主机关键系统综合研究设施(CRAFT)作为关键工具台,将聚变堆分解为可逐一攻破的独立系统进行测试与优化 [2] - 2024年,CRAFT数个关键子系统取得重要进展,为工程建设提供了“指导手册” [2] 国际合作与行业生态 - 紧凑型聚变能实验装置(BEST)的全球研究计划已发布,燃烧等离子体国际科学计划项目在合肥启动 [2] - 来自10多个国家的科学家共同签署《合肥聚变宣言》,呼吁全球协作推进可控核聚变研究 [2] - 行业当前呈现各国围绕科技“赛点”争分夺秒、你追我赶的竞争态势 [2] - 行业共识认为,摒弃“筑墙”“圈地”,通过全球携手共进才能加速“人造太阳”的技术突破 [2] 研发路径与工程挑战 - 实现可控核聚变的第一步是制造能承载超高温与超低温、实现等离子体稳态运行的强大容器 [1] - 行业发展初期面临超导材料缺失、无经验可循、无标准可依等“卡脖子”难题,具体包括超大电流、超强磁场和超高真空等技术挑战 [1] - 技术发展路径清晰:从EAST(实验装置)到CRAFT(关键系统研究设施)再到BEST(实验装置),体现了从理论探索、实验验证到工程设计、系统集成的完整推进过程 [3] - 行业研发秉承长期主义,通过“一代人干不完,就由下一代接着干”的接力模式持续推进 [3]
让我们的“太阳”经久燃烧
人民日报· 2025-12-08 18:03
可控核聚变技术进展 - 全超导托卡马克核聚变实验装置(EAST)已实现1亿摄氏度高温下1066秒的稳态运行[1] - 聚变堆主机关键系统综合研究设施(CRAFT)作为关键部件研发平台 其数个关键子系统在当年取得重要进展[2] - 紧凑型聚变能实验装置(BEST)的全球研究计划已发布 燃烧等离子体国际科学计划项目在合肥启动[2] 研发历程与工程挑战 - 行业在超过19年的研究中进行了超过15万次放电实验[1] - 研发初期面临超导材料、经验、标准缺失以及超大电流、超强磁场、超高真空等“卡脖子”难题[1] - 研发路径从理论探索到实验验证 再到工程设计与系统集成 体现了长期坚持与代际传承[3] 国际合作与行业生态 - 来自10多个国家的科学家共同签署《合肥聚变宣言》 呼吁全球合作推进可控核聚变研究[2] - 行业认为“筑墙”“圈地”无益 各展所能、携手共进才能加速“人造太阳”的技术突破[2] - 中国的研发接力已拓展为全球范围的合作 旨在传递希望“火种”[3]
让我们的“太阳”经久燃烧(中国道路中国梦·青春为中国式现代化挺膺担当)
人民日报· 2025-12-08 06:06
可控核聚变技术进展 - 全超导托卡马克核聚变实验装置(EAST)已实现1亿摄氏度高温下1066秒的稳态运行[1] - 聚变堆主机关键系统综合研究设施(CRAFT)作为关键工具台,其数个关键子系统在当年取得重要进展[2] - 紧凑型聚变能实验装置(BEST)的全球研究计划已发布,燃烧等离子体国际科学计划项目在合肥启动[2] 研发历程与工程突破 - EAST装置在19年间进行了超过15万次放电实验[1] - 研发面临超导材料、超大电流、超强磁场、超高真空等“卡脖子”难题,属于从零开始的探索[1] - CRAFT设施将聚变堆所有关键部件拆解为可逐一攻破的独立任务进行测试与优化,包括偏滤器、超导磁体、八分之一真空室及遥操作系统[2] 国际合作与行业生态 - 来自10多个国家的科学家共同签署《合肥聚变宣言》,呼吁全球合作推进可控核聚变研究[2] - 行业呈现各国围绕科技“赛点”争分夺秒的竞争态势,但同时也强调开放合作与携手共进的重要性[2] - 中国的聚变研究体现了从理论探索到实验验证,再到工程设计及系统集成的完整推进路径[3] 技术路径与设施体系 - 中国聚变研究依靠三大关键装置平台:EAST、CRAFT和BEST[1][2] - EAST是能够承载超高温和超低温、实现等离子体稳态运行的全超导托卡马克装置[1] - 研究路径从建造能承载极端条件的容器开始,逐步解决工程实现中的各项挑战[1]
让我们的“太阳”经久燃烧(中国道路中国梦·青春为中国式现代化挺膺担当㉙)
人民日报· 2025-12-08 06:02
可控核聚变技术进展 - 全超导托卡马克核聚变实验装置(EAST)已实现1亿摄氏度高温下1066秒的稳态运行[1] - 聚变堆主机关键系统综合研究设施(CRAFT)作为关键工具台,其数个关键子系统在2025年取得重要进展[2] - 紧凑型聚变能实验装置(BEST)的全球研究计划已发布,燃烧等离子体国际科学计划项目在合肥正式启动[2] 研发历程与工程突破 - EAST装置在19年间进行了超过15万次放电实验,实现了技术突破[1] - 研发面临超导材料、超大电流、超强磁场、超高真空等“卡脖子”难题,通过自主创新逐步攻克[1] - CRAFT设施将聚变堆所有关键部件拆解为独立任务进行逐一攻破和测试优化,包括偏滤器、超导磁体、八分之一真空室和遥操作系统[2] 国际合作与行业生态 - 来自10多个国家的科学家共同签署《合肥聚变宣言》,呼吁全球合作推进可控核聚变研究[2] - 行业正围绕科技“赛点”争分夺秒,各国加速新技术研究[2] - 国际合作被视为加速“人造太阳”突破的关键,封闭的“筑墙”“圈地”无益于发展[2] 发展战略与传承 - 中国通过EAST、CRAFT、BEST等装置平台,系统性地推进从理论探索、实验验证到工程设计、系统集成的全链条创新[3] - 行业秉持“一代人干不完,就由下一代接着干”的长期主义精神,科学家精神薪火相传[3] - 中国的聚变能研究已从国内接力拓展为全球性的“火种”传递,成为更加开放的机遇[3]
我国启动聚变领域国际科学计划 聚变工程建设进入关键期
上海证券报· 2025-11-25 02:09
国际合作与项目启动 - 中国科学院“燃烧等离子体”国际科学计划项目在合肥启动,紧凑型聚变能实验装置(BEST)研究计划面向全球发布,来自法国、英国、德国等十余个国家的科学家签署《合肥聚变宣言》倡导开放共享与合作共赢 [1] - 项目旨在整合国际聚变领域合作资源,通过设立开放科研基金、搭建联合实验平台等方式开展合作研究,合肥物质院等离子体所已与50多个国家的120余家科研机构建立稳定合作关系 [2] - 国际原子能机构数据显示,近40个国家正推进聚变计划,超过160个聚变装置正在运行、建设或规划之中 [1] 技术研发与工程进展 - 聚变实验研究即将进入燃烧等离子体物理新阶段,这意味着核聚变能像“火焰”一样由反应自身热量维持,是未来持续发电的基础 [1][2] - BEST装置预计2027年底建成,将进行氘氚燃烧等离子体实验,验证长脉冲稳态运行能力,力求聚变功率达到20兆瓦至200兆瓦,实现产出能量大于消耗能量并演示发电 [2] - 全球核聚变发展正处于向百兆瓦级工程演进的关键跃迁期,未来5年至10年将有多个示范性装置陆续落地 [3] 采购与产业化进程 - 聚变新能(安徽)有限公司发布总金额超20亿元的采购项目,涉及BEST离子回旋波源系统、低温系统关键部件等核心设备 [3] - 合肥物质院等离子体所近期发布的采购项目合计预算金额超13亿元,主要为涉氚相关平台等 [3] - 大规模采购预示核聚变研究从实验室走向“工程化验证”与“示范堆导入”的关键阶段,行业开始进入密集招投标期 [3] 资本市场与投资热度 - 10月以来,安东聚变、翌曦科技、曦融兆波、星能玄光等核聚变产业链上下游企业相继获得融资,投资方包括机构投资者和国资背景企业 [4] - 资本布局主要聚焦于支撑装置实现“高壁垒+高价值量”迭代的核心硬件与材料环节,以及前沿技术路线 [4] - 装置小型化与高温超导材料的应用提升了商业化可行性,AI算力中心等新型高能耗场景对稳定清洁能源的迫切需求为核聚变能提供了广阔空间 [4]
从太空看“十四五”丨这些创新高地,正在拔地而起
新华网· 2025-08-12 13:45
国家科技创新平台建设进展 - "十四五"规划纲要提出建设北京怀柔、上海张江、大湾区、安徽合肥综合性国家科学中心,并支持有条件的地方建设区域科技创新中心 [1] - 卫星观测显示科学高地正在加速崛起,形成重大科技创新平台集群 [1] 北京怀柔科学城发展 - 怀柔科学城从2016年规划逐步发展为全国重大科技基础设施密度最高地区之一,大科学装置布局初现 [5] - 核心设施高能同步辐射光源(HEPS)建成后将成为世界亮度最高的第四代同步辐射光源之一 [7] 上海张江科学城建设 - 张江科学城从1992年17平方公里扩展至2024年220平方公里,建有2个国家实验室、9个大科学设施、20多个研发机构及100多个孵化器 [9] - "上海光源"作为核心设施支撑科学城向国际一流迈进,人工智能岛产业生态圈建设显著完善(2020-2025) [9][11] 深圳光明科学城规划 - 光明科学城总面积99平方公里,重点布局大科学装置、科教融合、科技创新三大集群 [13] - 深圳理工大学主校区2024年获批设立,依托中科院深圳先进院资源开展前沿科技研究与人才培养 [15] 合肥未来大科学城聚焦领域 - 规划面积19.2平方公里,聚焦量子信息、聚变能源、深空探测三大高地,建设"夸父"聚变装置等国家重大设施 [17] - 聚变堆主机关键系统综合研究设施(CRAFT)等装置集群建设成果显著(2021-2024对比) [17][19] 西部(成都)科学城产业布局 - 采用"一城多园"模式,成都科学城已布局6个大科学装置,其中2个纳入国家"十四五"重大设施规划 [21][23] - 主导产业为电子信息、生物医药、数字经济,实施"建圈强链"成为区域经济增长极 [23]
海水有望点亮万家灯火
人民日报海外版· 2025-07-18 09:52
可控核聚变技术原理 - 可控核聚变技术模仿太阳发光发热原理,通过氢同位素氘和氚结合释放巨大能量 [1] - 氘可直接从海水中提取,氚通过氘与锂反应产生,原料来源丰富 [1] - 1升海水核聚变释放能量相当于300升汽油,能量密度极高 [1] - 核聚变反应条件失效时会瞬间停止,无核泄漏或辐射风险,安全性显著优于传统核裂变 [1] 中国核聚变技术进展 - 全超导托卡马克装置(EAST)实现多项突破:60秒、100秒、403秒长脉冲运行,2023年1月创下1亿摄氏度1066秒稳态运行世界纪录 [2] - EAST突破验证聚变发电可行性,模拟未来聚变堆稳态运行环境 [2] - 紧凑型聚变能实验装置(BEST)2023年5月启动总装,采用全超导技术路线,体积更小但功率密度更高 [2] - BEST聚焦能量净输出(输出>输入),为商业化核心攻坚方向,预计2027年建成 [2][4] 核聚变产业链布局 - BEST装置涉及数百万零部件,形成庞大上游产业链需求 [2] - 合肥及周边孵化30余家核聚变相关企业,部分已上市,形成上下游协同的产业集群 [4] - 衍生技术应用广泛:太赫兹偏振干涉仪用于地铁安检,超导磁体技术用于医疗质子治疗系统 [4] - 聚变堆主机关键系统研究设施(CRAFT/"夸父"项目)2023年底建成,将成为国际参数最高、功能最完备的聚变研发平台 [4] 商业化发展路线 - 技术路线分三步:EAST验证可行性→BEST演示发电→CRAFT提供核心部件 [4] - 时间表:2030年首次演示聚变发电,2035年建成工程示范堆,2050年前实现商业化发电 [4] - 国产化能力完善,关键领域无"卡脖子"风险 [4]
【新华社】从太空看“十四五”丨这些创新高地,正在拔地而起
新华社· 2025-07-04 16:36
国家科技创新平台建设 - "十四五"规划纲要提出建设北京怀柔、上海张江、大湾区、安徽合肥综合性国家科学中心,支持有条件的地方建设区域科技创新中心 [1] - 从太空俯瞰,卫星捕捉到科学高地正在加速崛起 [1] 北京怀柔科学城 - 2020年4月规划区与2024年8月建成区对比显示,怀柔科学城大科学装置布局初现 [3] - 2016年国务院提出统筹规划建设中关村科学城、怀柔科学城和未来科技城,2017年北京怀柔综合性国家科学中心建设方案获批 [3] - 经过近十年发展,怀柔科学城已成为国家重大科技基础设施密度最高的地区之一 [3] - 高能同步辐射光源(HEPS)建成后将是世界上亮度最高的第四代同步辐射光源之一 [4] 上海张江科学城 - 2025年与2020年相比,张江科学城内人工智能岛周围的产业生态圈建设更加完善 [6] - 张江科学城前身为1992年开园的张江高科技园区,目前建有2个国家实验室和基地、9个大科学设施、20多个国家级和上海市级研发机构,100多个孵化器 [6] - 上海光源是上海科创中心建设的核心承载区,面积从最初的17平方公里扩展到220平方公里 [8] 深圳光明科学城 - 2024年与2020年相比,深圳理工大学主校区建筑群拔地而起 [10] - 光明科学城规划总面积99平方公里,重点布局大科学装置集群、科教融合集群、科技创新集群 [10] - 深圳理工大学于2024年5月获批设立,依托中国科学院深圳先进技术研究院资源,开展基础性、前沿科学技术研究 [11] 合肥未来大科学城 - 2024年与2021年相比,合肥未来大科学城内核心科学装置集群建设成果显著 [14] - 规划总面积约19.2平方公里,聚焦量子信息、聚变能源、深空探测三大科创引领高地 [14] - 建设以"夸父"(聚变堆主机关键系统综合研究设施)与BEST(紧凑型聚变能实验装置)等大科学装置 [14] 西部(成都)科学城 - 2020年待开发地块与2024年建成区对比显示,实验室集群拔节生长 [18] - 西部科学城采用"一城多园"模式,包括西部(成都)科学城、西部(重庆)科学城等创新资源集聚载体 [18] - 西部(成都)科学城2021年6月挂牌,目前布局6个大科学装置,其中2个纳入国家"十四五"规划重大科技基础设施布局 [19] - 聚焦电子信息、生物医药、数字经济三大主导产业,实施产业"建圈强链" [19]
活力中国调研行走进安徽 | 安徽合肥核聚变能加速冲刺:用一杯海水点亮万家灯火
环球网资讯· 2025-07-03 15:51
可控核聚变技术发展 - 可控核聚变技术借鉴太阳发光发热原理,利用氢同位素氘和氚结合释放巨大能量,氘可从海水中提取,氚通过氘和锂反应产生 [5] - 一升海水提取的氘发生核聚变释放能量相当于300升汽油 [5] - 核聚变具有原料丰富、清洁低碳、安全高效特点,反应条件失效时会瞬间停止,不存在核泄漏风险 [6] 中国核聚变研究进展 - 全超导托卡马克核聚变实验装置(EAST)实现多项突破:先后达到60秒、100秒、403秒长脉冲运行,2023年1月首次实现1亿摄氏度1066秒稳态运行刷新世界纪录 [6] - 紧凑型聚变能实验装置(BEST)于2023年5月启动总装,采用全超导技术路线,体积缩小但功率密度提升,聚焦能量输出超过输入的核心目标 [8] - 聚变堆主机关键系统综合研究设施("夸父"项目)预计2023年底建成,将成为国际聚变领域参数最高、功能最完备的研究测试平台 [9][11] 核聚变产业链布局 - 聚变新能(安徽)有限公司作为BEST装置实施主体,已孵化30余家核聚变相关企业,部分已上市并形成上下游产业链 [8][9] - 合肥汇集近60家核聚变企业覆盖超导线材生产、主机设备制造、设计运营等全产业链,2023年成立的聚变产业联合会已有200余家会员企业 [9] - 衍生技术应用广泛:太赫兹偏振干涉仪技术用于地铁安检,超导磁体等技术用于医疗产业 [8] 商业化发展路线图 - BEST装置预计2027年建成,2030年首次演示聚变发电,2035年建成工程示范堆,2050年前实现商业化发电 [11] - 核聚变商业化将推动能源结构变革:石油煤炭回归化工原料属性,风光电力退居补充角色 [11] - 核聚变装置本身构成巨大商业场景,仅BEST装置就可能包含数百万个零部件 [8]