Workflow
EUV光源
icon
搜索文档
十万零件筑就的工业明珠!中国光刻机突围战打响
材料汇· 2025-07-26 23:45
光刻技术核心 - 光刻是半导体制造中最重要且技术壁垒最高的环节,通过光刻机将掩模版图案转移至晶圆,直接决定产线技术水平 [8][9] - 光刻工艺分为曝光、显影和清洗三阶段,需涂覆光刻胶并通过化学反应实现图案转移 [9][14] - 分辨率是光刻机核心指标,由瑞利公式决定,与光源波长λ、数值孔径NA及工艺因子k1相关 [2][15][25] 光刻机技术演进 - 光源波长从436nm汞灯光源迭代至13.5nm EUV光源,优化跨度最大 [35][36][38] - 数值孔径NA通过浸润式技术(折射率1.44)和透镜设计提升,浸没式光刻机NA达1.35 [41][53][57] - 工艺因子k1通过RET技术突破0.25理论极限,包括OPC、OAI、PSM等方法 [59][60][62] 光刻机核心部件 - 光源系统:EUV光源由CO2激光轰击锡靶液滴产生,全球仅Cymer和Gigaphoton能供应 [3][39][69] - 光学系统:DUV采用29片透镜组,EUV采用蔡司反射镜(平整度<0.05nm) [73][74][76] - 工件台系统:ASML双工件台技术使生产效率达295片/小时,精度控制是关键 [78][79] 行业竞争格局 - ASML凭借双工件台、浸润式和EUV技术垄断市场,EUV市占率100% [80][83][84] - 尼康聚焦DUV(38nm分辨率),佳能主攻KrF/i线等低端市场 [113][114][115] - 全球光刻机CR3近100%,ASML占60%份额 [83][84] 国产化进展 - 上海微电子已实现90nm DUV光刻机量产,封装光刻机全球市占40% [131] - 华卓精科突破双工件台技术,国科精密研发NA=0.75物镜系统 [128][131] - 中科院22nm超分辨光刻装备通过验收,结合双重曝光可达10nm级 [128]
颠覆性技术,让芯片制造速度提高15倍!
半导体行业观察· 2025-06-10 09:18
核心观点 - Inversion Semiconductor提出基于激光尾场加速器(LWFA)的颠覆性光刻技术方案,其光源功率比ASML现有技术高33倍,芯片制造速度可提升15倍[4][12][24] - 该技术采用桌面级粒子加速器(比传统加速器小1000倍),输出功率达10千瓦,支持20nm至6.7nm波长范围,包括ASML当前使用的13.5nm EUV光[8][12][16] - 公司计划开发完整光刻系统与ASML直接竞争,但面临拍瓦级激光器的高成本、高功耗(比ASML高10倍)及生态系统构建等重大挑战[5][6][21][25] 技术原理 - LWFA技术利用飞秒级激光脉冲与等离子体相互作用产生加速电场,电子在厘米级距离内可获得千兆电子伏特(GeV)能量,加速场强达传统方法的100-1000倍[12] - 产生的辐射具有相干性、单色性和可调谐性,波长可短至6.7nm(当前工业未应用),为下一代光刻提供可能[12][16] 研发进展 - 已建立小型激光实验室开发激光稳定技术,并与劳伦斯伯克利国家实验室合作推进BELLA-LUX项目[14] - 近期目标为开发"星光"光源(1kW功率,20-6nm波长),应用于工业X射线成像和掩模检测,特斯拉等公司已表示兴趣[16] - 正在研发LITH-0光刻原型机,配备EUV反射镜系统,但量产时间未明确[16] 竞争与合作 - 需与ASML等现有厂商合作以兼容现有设备,但需开发新光束整形和计量系统,ASML可能缺乏合作意愿[22] - 若独立开发光刻系统,需构建全新生态系统(包括光刻胶、防护膜等),且缺乏晶圆厂设备量产经验[22][25] 技术挑战 - 拍瓦级激光系统体积庞大、维护复杂,稳定性与重复频率尚未验证[21] - 电子束在超过1GeV时存在能量分散和光束发散问题,影响光刻图案精度[21] - 短波长光学需全新反射镜设计,增加技术复杂度[21]
基辛格,投身EUV光刻
半导体行业观察· 2025-04-14 09:28
公司动态 - 前英特尔CEO帕特·基辛格加入EUV光源初创公司xLight担任执行董事长 [1] - xLight计划在2028年前推出基于粒子加速器的EUV光源技术 [3] - 公司正在构建功能齐全的原型,预计2028年可连接ASML扫描仪并运行晶圆 [8] 技术革新 - xLight采用自由电子激光器(FEL)技术,功率是现有LPP光源的4倍 [7][13] - 新技术可将每片晶圆成本降低约50%,资本和运营支出减少3倍以上 [7][13] - 单个xLight系统可支持多达20个ASML系统,使用寿命达30年 [13] - FEL系统具备可编程光特性,支持更短波长光刻技术 [15][17] 行业现状 - 当前EUV光刻采用激光等离子体(LPP)技术,1.5兆瓦电力仅产生500瓦光 [1][5] - ASML现有光源额定功率500瓦,未来需要1千瓦以上功率 [21] - LPP技术已接近物理极限,无法完全支持ASML未来版本扫描仪 [5] 技术对比 - FEL利用粒子加速器产生电子束,通过波荡器产生高强度光束 [10][21] - LPP技术采用二氧化碳激光器将锡液滴喷射成等离子体 [20] - FEL系统比LPP更易于维护且高度可靠 [10] - 日本KEK团队的cERL技术目前仅能产生红外光脉冲 [22] 市场前景 - 每个EUV光源蕴藏数十亿美元市场机遇 [6][8] - 新技术可为每台扫描仪带来数十亿美元额外年收入 [7][13] - 该技术有望延续摩尔定律数十年 [18] - 除半导体外,FEL还可应用于计量、检测、国家安全和生物技术领域 [8]