Transformer
搜索文档
手撕大模型,KVCache 原理及代码解析
自动驾驶之心· 2025-10-20 14:30
KV Cache技术概述 - KV Cache是大型语言模型推理过程中的关键技术,通过缓存中间计算结果显著提升模型运行效率[1] - 该技术专门针对Transformer自回归推理场景,在文本生成等任务中发挥重要作用[1] KV Cache的工作原理 - 核心思想是缓存历史计算中的键(Key)和值(Value)矩阵,避免重复计算[4] - 生成新token时只需计算新的Q矩阵并与历史KV矩阵进行注意力计算[4][7] - 将时间复杂度从O(n²)降低到O(n),极大提升长序列生成效率[4][7] - 首次生成时计算并缓存所有输入token的K和V矩阵,后续生成只需计算新token的查询矩阵[7] KV Cache的技术实现细节 - 为每个注意力头维护独立缓存,结构为[batch_size, num_heads, seq_len, head_dim][11] - 缓存会随着生成过程动态增长,直到达到模型最大序列长度限制[11] - 采用滑动窗口机制处理超长序列,如Llama 2只保留最近N个token的KV缓存以控制内存占用[12] - 需要权衡最大缓存长度、批量大小和精度选择等参数[15] 内存与性能权衡 - KV Cache提升速度但需要额外内存存储缓存数据[11] - 以GPT-3 175B模型为例,每个token的KV缓存约占用20KB内存[12] - 生成1000个token时单个样本需要约20MB内存,批量处理时内存消耗线性增加[12] 代码实现机制 - 通过维护cache_k和cache_v变量实现历史KV值的存储和更新[14] - 使用缓存时会将新计算的K、V与历史缓存进行拼接[14] - 提供reset_cache方法用于新序列生成时重置缓存状态[14] 优化策略 - 分页KV Cache借鉴内存分页机制,将连续缓存分割成固定大小块提高内存利用率[22] - 动态缓存管理根据输入序列长度动态调整缓存大小[22] - 量化缓存使用INT8或INT4等低精度格式存储,大幅减少内存占用[22] - 选择性缓存对不重要层或注意力头不进行缓存,平衡速度和内存[22]
浙大提出Translution:统一Self-attention和Convolution,ViT、GPT架构迎来新一轮性能突破
AI科技大本营· 2025-10-14 16:17
核心技术突破 - 浙江大学与新加坡国立大学联合提出新型深度神经网络基础操作Translution 旨在融合Self-Attention的自适应建模优势与Convolution的相对位置建模能力 [1] - Translution的核心思想是将卷积操作中的固定权重核转变为由自注意力机制动态生成的自适应核 从而灵活捕获与数据本身内在结构相关且与绝对位置无关的表征 [5] - 该技术实现了Self-attention和Convolution两种操作的统一 被描述为合二为一的性能怪兽 [8] 性能表现 - 基于Translution构建的神经网络在ViT和GPT两大主流架构下均获得性能提升 展现出广阔应用前景 [3] - 在ImageNet数据集上 基于Translution构建的ViT取得明显优于Self-attention的效果 [4] - 在自然语言建模任务中 基于Translution构建的GPT模型在不同参数规模下均超越Self-attention 例如GPT-A-160架构下困惑度从60.40降至56.26 [4] 行业背景与影响 - 当前基于Self-Attention的Transformer是深度学习主流架构 但其Scaling Law红利正逐渐触顶 单纯增加参数和训练数据难以带来性能提升 [5] - Translution是对上述行业挑战的有力回应 被视为探索新型神经网络以持续推动深度学习繁荣的重要尝试 [5] - 该技术对算力特别是GPU显存提出更高要求 可能进一步加剧人工智能领域的资源差距 [6]
Flash Attention作者最新播客:英伟达GPU统治三年内将终结
量子位· 2025-09-29 12:57
英伟达市场地位与竞争格局 - 英伟达当前在AI芯片市场占据约90%主导地位,主要优势在于芯片设计、软件生态及网络通信技术[9][10] - AMD在推理端具备内存容量优势,但在训练端因网络通信瓶颈仍落后于英伟达[10] - 未来2-3年内AI硬件格局将转向多元化,专用芯片厂商如Cerebras、Grok、SambaNova将针对不同工作负载实现差异化竞争[23][24] AI芯片技术发展趋势 - 芯片设计将更适配Transformer、MoE等特定架构,工作负载集中化使专用芯片开发更易实现[10] - 稀疏计算(如MoE架构)增加芯片设计复杂度,需应对内存访问模式变化[13][14] - 硬件需支持三类工作负载:低延迟智能体系统(毫秒级响应)、高吞吐批量处理(海量数据生成)、交互式聊天机器人[24][96][111] 推理成本优化与技术突破 - 近三年推理成本下降约100倍,未来有望再降低10倍[73][90] - 量化技术推动参数表示从16位降至4位,GPT-oss模型1200亿参数仅需60GB存储空间[82][83] - 架构优化如Flash Attention减少内存访问,DeepSeek的multi-head latent attention压缩KV缓存规模[84] - MoE架构显著提升稀疏度,从Mistral的8专家激活2个(25%)演进至GPT-oss的128专家激活4个(1/32)[86][87] 模型架构演进方向 - Transformer仍是基础架构,但MoE、状态空间模型(如Mamba)等创新持续涌现[13][94][132] - 混合架构(Transformer+Mamba)在降低成本的同时提升推理性能[132] - 架构设计趋向"推理优先",以最大化每浮点操作的推理效率[131][133] AI工作负载分类与优化 - 三类核心工作负载形成:传统聊天机器人(中等延迟)、极低延迟场景(代码辅助等)、大规模批处理(合成数据生成)[96][111] - 低延迟场景用户愿支付更高成本,高吞吐场景注重批量折扣(如OpenAI批量API提供50%折扣)[24][110] - 代理型工作负载成为新焦点,需整合Web搜索、工具调用等外部能力[20][115] 开发工具与抽象层进展 - Triton成为跨芯片抽象层关键,支持英伟达、AMD、Intel GPU,但需牺牲约5%性能换取开发效率提升[38][40][41] - Mojo、Gluon等领域专用语言快速迭代,解决GPU内核开发痛点[45][50][52] - AI辅助编程工具(如Claude Code)提升开发效率约1.5倍,但全自动内核生成仍处早期阶段[56][67][68] 新兴应用场景与市场机会 - 实时视频生成成为消费端趋势,代表企业包括Pika Labs、Hetra[117][118] - 机器人领域存在重大机遇,需解决多分辨率数据处理与现实世界交互数据缺失问题[135][137][138] - 合成数据市场被低估,在航空、金融等专业领域具有经济价值[99][102][148] 学术与产业协同创新 - 基础突破多源于学术界(如Attention机制、Adam优化器、LayerNorm),产业界负责商业化落地[143][144][145] - 学术探索周期长(2-3年),产业执行速度快(周/月级),形成互补创新模式[140][145] - 政府资金支持早期探索(5-10%成功率),风险投资推动规模化应用[142][146]
谢赛宁回忆七年前OpenAI面试:白板编程、五小时会议,面完天都黑了
机器之心· 2025-08-29 17:53
AI大厂面试特点分析 - Meta研究者Lucas Beyer发起关于AI大厂面试体验的投票 选项包括Google/Meta/MS、OpenAI/Anthropic、xAI和Old DeepMind [1] - 投票结果显示Old DeepMind以32.1%的得票率被评为最佳面试体验 [20] 顶尖研究人员职业轨迹 - Lucas Beyer拥有超过94,000次学术引用 h-index达40 2020年以来引用量达93,147次 [2][4] - 2024年6月与Alexander Kolesnikov和Xiaohua Zhai三位研究者共同从OpenAI转入Meta [2] 各公司面试模式比较 - Old DeepMind采用两小时高强度面试 包含100多个数学统计和机器学习问题 [6] - Meta FAIR面试侧重学术讨论和编码 曾由Piotr Dollar、Ross Girshick和何恺明担任面试官 [6] - Google面试采用"教职面试"模式 包含编程题和研究讨论 知名AI学者Noam Shazeer曾参与面试 [7] - OpenAI面试采用5小时白板编程和研究报告形式 由联合创始人John Schulman亲自设计强化学习问题 [7] 面试过程典型案例 - 谢赛宁在OpenAI面试时讨论强化学习中的方差崩溃问题 尽管当时对该领域了解有限但仍需现场研究解决 [7] - Omar Shams回忆DeepMind面试涵盖代码数学统计和机器学习 面试官Jacob Menick给予满分评价 [12] - Rishabh Agarwal被Christian Szegedy面试时 需解决概率分布相关的飞镖游戏问题 并在餐巾纸上完成数学计算 [18] - Felipe Mello在谷歌面试中被要求编写单元测试并分享最难解决的bug [14] - Ashwinee Panda在xAI联合创始人张国栋的面试中获得研究灵感 最终扩展为正式研究成果 [16] 行业人才流动趋势 - 知名研究人员频繁在顶级AI机构间流动 包括OpenAI、DeepMind、谷歌大脑和Meta等 [2][6] - 行业顶尖人才如Ross Girshick(超过60万引用)和何恺明已从企业转向学术或创业领域 [6]
新一轮智驾PK,迈入实战时刻
虎嗅· 2025-08-27 18:38
新一轮智驾技术竞赛背景 - 中国头部智驾公司近期集中落地最新智驾能力 包括理想汽车推送VLA司机大模型 Momenta与智己合作R6飞轮大模型 元戎启行发布VLA大模型 小鹏发布全新VLA大模型 华为计划9月推送ADS 4系统 [2][5] - 行业动作集中源于四大驱动力:监管加强推迟部分公司节奏 AI底层创新突破时间相近 技术适配需要固定训练周期 公司担心竞品抢先选择先发布基础版再优化策略 [3][6] VLA模型技术突破 - VLA模型相比传统端到端模型取消感知/定位/预测/规划等独立环节 实现从传感器到控制端的单一完整模型架构 [7] - 模型底层技术从CNN升级为Transformer 显著提升对人类大脑模仿学习能力 [8] - VLA模型具备思维链(CoT)能力 通过语言媒介模仿人类驾驶思考 将决策分解为连贯推理步骤 [9] - 相比VLM模型 VLA在输入输出和应用层面更贴合智驾需求 输入包含图像/文本/历史状态 输出为可执行动作 应用领域涵盖机器人控制和自动驾驶 [9] VLA模型核心优势 - 增强决策逻辑性:面对校车/儿童等复杂路况时能分步推理 显著提升可靠性及安全性 [11] - 提升系统可解释性:以人类可理解语言展现决策依据 助力研发调试与事故追溯 [11] - 强化泛化能力:通过海量数据学习推理逻辑 实现应对未知新场景的能力 [11] - 实际测试显示防御性驾驶能力突出 在立交桥辅道主动降速至安全范围 在视线遮挡路口预判电瓶车风险主动降速 在丁字路口提前分析并缓速汇流 [12][14][15][16] 技术应用体验升级 - 驾驶体验实现综合性飞跃 包括更顺滑控车/更果断反应/全程安全感提升 极端场景仍需人工接管但信任感显著增强 [17] - 支持语音指令交互 可响应"加速/减速"等基础操作 并能直接读取交通标识文字执行优化驾驶 [17] 行业发展趋势 - VLA模型当前尚未完全实现思维链能力 自评仅达6分(满分10分) 需持续收集测试数据并优化后训练 [18][19] - 成本差异主要集中于芯片 15万元以上车型可适配 10万元级别车型经优化也有搭载可能 [20] - 智驾芯片将加强Transformer支持 重点优化FP4/FP6精度算力 [21] - 车企自研辅助驾驶系统需经历规则算法/端到端1.0/VLA的完整技术演进过程 无法完全跳过特定阶段 [21]
DiT突遭怒喷,谢赛宁淡定回应
量子位· 2025-08-20 15:48
文章核心观点 - DiT(Diffusion Transformers)作为扩散模型领域的核心架构受到质疑,但原作者谢赛宁强调科学验证的重要性并回应质疑,同时指出DiT的技术优势及改进方向 [4][5][6][9][27][29][32] DiT的技术地位与影响 - DiT将Transformer与扩散模型融合,在计算效率和生成效果上超越基于U-Net的经典模型ADM和LDM,并将Transformer扩展到图像视频领域 [9] - 若DiT存在根本性错误,大量依赖DiT的生成模型可能需重新评估,对整个领域产生重大影响 [10] 质疑者的核心论点 - 质疑依据来源于论文《TREAD:Token Routing for Efficient Architecture-agnostic Diffusion Training》,提出Tread策略可将早期层token传递至更深层,无需修改架构或引入额外参数 [12][13][14] - DiT架构可能隐含特性导致FID迅速降低,Tread模型比DiT在40万次训练迭代快14倍,在700万次迭代时快37倍 [15][16] - 质疑者认为大幅性能提升可能否定原有方法,并批评训练中禁用部分网络的做法 [17][19] - 指出DiT后置层归一化可能导致动态范围输出问题,需使用对数尺度处理信噪比差异 [23] - 质疑DiT的条件处理仅通过普通MLP流程,未体现Transformer特性 [25][26] 谢赛宁的回应与技术说明 - 强调Tread策略与"DiT是错的"无直接关联,认为Tread类似随机深度,通过正则化提升特征稳健性 [27][28] - 推荐使用经过验证的Lightning DiT版本(含swiglu、rmsnorm、rope等技术),并指出后置层归一化目前无证据表明存在问题 [29][30] - 提出DiT的核心改进集中于内部表征学习,包括REPA方法、tokenizer修正、语义token拼接、解耦架构及正则化方法 [32] - 训练中采用随机插值/流分配提升效果,SiT作为基准评估方法,时间嵌入需使用adaln-zero并共享参数以避免浪费30%参数 [33] - 指出sd-vae是DiT当前症结,处理256×256分辨率图像需445.87 GFlops且非端到端架构,va-vae和repa-e仅能部分解决问题 [34]
DiT在数学和形式上是错的?谢赛宁回应:不要在脑子里做科学
机器之心· 2025-08-20 12:26
文章核心观点 - 一篇X平台帖子质疑DiT架构存在根本性缺陷 认为其训练效率低且存在隐性设计问题 而TREAD训练策略的提出暴露了这些问题 [1][4][8] - DiT作者谢赛宁回应质疑 承认架构存在改进空间但强调需通过科学实验验证 而非纯理论推测 同时指出DiT当前真正问题是sd-vae模块的低效性 [29][33][36] - TREAD方法通过令牌路由机制显著提升训练效率 在DiT骨干网络上实现14/37倍训练加速 并达到更低FID分数(生成质量更高) [2][6] DiT架构争议点 - 帖子指出DiT使用后层归一化(Post-LayerNorm)处理数值剧烈变化的扩散任务 可能导致不稳定 [11][13] - 批评adaLN-zero机制用简单MLP替代Transformer处理条件数据 限制注意力操作表达力 [12][16] - 引用早期研究认为LayerNorm的偏置参数可能虚假改善性能而非真正优化梯度 [17] TREAD技术优势 - 采用令牌路由机制 训练时使用部分令牌集减少计算成本 推理时恢复完整设置 [6] - 在A100 GPU训练100-10000小时范围内 FID分数显著降低(质量提升)[2][3] - 方法架构无关 可与MaskDiT等技术兼容但更高效 [6] 谢赛宁的技术回应 - 强调TREAD实际更接近随机深度(Stochastic Depth)的正则化效应 而非架构缺陷证明 [36] - 推荐Lightning DiT作为升级版(含swiglu/rmsnorm/rope等技术)[36] - 指出sd-vae模块是真正硬伤:处理256×256图像需445.87 GFlops 低效且非端到端 [36] DiT行业地位 - DiT为扩散模型与Transformer结合的首个工作 替代U-Net成为图像/视频生成主流架构 [20][22][23] - 已成为Sora和Stable Diffusion 3的基础架构 具备学术与工业应用双重价值 [25]
端到端VLA的起点:聊聊大语言模型和CLIP~
自动驾驶之心· 2025-08-19 15:20
大语言模型技术发展 - 大语言模型近五年发展迅速,Transformer架构是核心技术基础 [3][5][7] - Transformer核心模块包括注意力机制和多头注意力,通过8个head增强编解码能力 [11][12] - 位置编码采用正弦/余弦函数实现顺序表征,公式为PE(pos,2i)=sin(pos/10000^(2i/d_model)) [9][13] - BPE分词算法通过合并高频字符逐步构建词表,流程包括统计频次、迭代合并等步骤 [8][13] 视觉与语言模型对齐技术 - CLIP是视觉与大模型对齐的典型代表,实现跨模态特征匹配 [18] - 多模态技术栈涵盖BEV感知、扩散模型、强化学习等方向 [48] - VLA(Vision-Language-Action)成为自动驾驶前沿方向,整合VLM、BEV和强化学习技术 [50] 端到端自动驾驶课程体系 课程结构 - 第一章概述端到端发展史,对比模块化与端到端范式差异 [40] - 第二章重点讲解大语言模型、BEV感知、扩散模型等关键技术 [41][48] - 第三章分析二段式端到端方案,涵盖PLUTO、CarPlanner等经典算法 [42] - 第四章深入一段式端到端,包括UniAD、DiffusionDrive等前沿工作 [43][47] - 第五章设置RLHF微调实战,强化VLA技术迁移能力 [52] 技术亮点 - 覆盖CVPR'25最新成果CarPlanner和AAAI'25世界模型Drive-OccWorld [42][45] - 实战项目包括Diffusion Planner和ORION开源框架复现 [47][50] - 课程目标使学员达到1年经验算法工程师水平,掌握40-70K岗位核心技术 [31][57] 行业应用与人才需求 - VLA算法专家岗位薪资达40-70K-15薪,需求集中在3-5年经验硕士 [31] - 技术栈要求涵盖多模态大模型、BEV感知、模型量化部署等方向 [34][48] - 主机厂加速布局端到端量产方案,推动世界模型、扩散模型等技术落地 [26][50]
马斯克:谷歌最有可能成为AI行业领先者
36氪· 2025-08-15 09:21
马斯克对谷歌AI的评价 - 马斯克罕见称赞谷歌,认为其目前最有可能成为AI行业领导者,因谷歌拥有最大的计算和数据优势 [1] - 马斯克预测行业格局可能在几年内变化,但大型AI公司(包括其旗下xAI)将继续蓬勃发展 [1] - 谷歌在AI领域具有技术积淀,2017年发表Transformer架构论文,该技术支撑ChatGPT等大模型 [1] - 谷歌通过投资Anthropic(持股14%)和Safe Superintelligence等初创公司强化AI布局 [1] 谷歌的AI投入 - 谷歌计划将2024年资本支出提高100亿美元至850亿美元,重点投入芯片和AI产品 [2] - 资本支出增加旨在满足市场对谷歌AI产品的需求增长 [2] 马斯克与OpenAI的纠纷 - 马斯克与OpenAI CEO奥尔特曼矛盾升级,双方互相指控平台推广不公 [3] - 纠纷源于2018年马斯克因理念不合离开OpenAI董事会,2023年其起诉OpenAI违反非营利使命 [3] - 马斯克2023年成立xAI并推出Grok聊天机器人,2024年通过三轮融资筹集超120亿美元 [3] 特斯拉与xAI的关联 - 马斯克表示特斯拉将交由股东投票决定是否投资xAI,但未公布具体时间表 [4] - 马斯克称个人倾向早已推动特斯拉投资xAI [5]
又是王冠:27M小模型超越o3-mini!拒绝马斯克的00后果然不同
搜狐财经· 2025-08-10 12:21
模型性能突破 - 2700万参数小模型HRM在ARC-AGI测试中达到40.3%准确率,超越o3-mini-high(34.5%)和Claude 3.7 8K(21.2%) [16] - 仅用1000个训练样本就实现极端数独任务近乎完美准确率,而现有思维链模型准确率为0% [16] - 在30x30迷宫任务中表现稳定,对比1.75亿参数Transformer模型准确率不足20% [18] 技术创新 - 采用仿脑设计的双层循环模块:高层模块负责慢节奏抽象规划,低层模块处理快节奏细节计算 [4][5] - 分层收敛机制避免过早收敛问题,通过高阶模块更新设定新目标 [9][11] - 近似梯度技术实现内存需求恒定且计算高效,仅需根据最终状态反推优化方向 [12] - 深度监督机制引入阶段性测试,及时纠正偏差 [13][14] - 自适应计算时间动态分配思考资源,简单任务快速响应,复杂任务延长计算 [14] 架构优势 - 克服标准Transformer的计算局限,能有效利用计算深度提升性能 [7] - 在需要大量树搜索和回溯的任务中,增加深度可提升准确率而非出现性能饱和 [7] - 对过拟合具有极强抵抗力,通过高低模块设计避免过早收敛 [18] 开发者背景 - 开发者王冠为00后清华校友,8岁开始编程,GitHub开源项目OpenChat独立开发者 [20][22] - 多次拒绝xAI等一线机构邀请,目标为颠覆Transformer架构 [22] - 2024年创办Sapient Intelligence并融资数千万美元,致力于开发全新大模型架构 [22]