Workflow
ETF热点趋势策略
icon
搜索文档
短期仍有空间,需注意流动性
民生证券· 2025-08-17 19:04
量化模型与构建方式 1. **模型名称:三维择时框架** - **模型构建思路**:通过分歧度、流动性和景气度三个维度对市场进行择时判断[7] - **模型具体构建过程**: 1. **分歧度指数**:衡量市场参与者观点的离散程度,反映市场情绪分化[12] 2. **流动性指数**:跟踪市场资金面松紧程度[22] 3. **景气度指数**:监测宏观经济和企业盈利状况[26] 将三个指标综合判断,当三者同步上行时给出看涨信号[14] - **模型评价**:历史表现显示该框架能有效捕捉市场趋势转折点[19] 2. **模型名称:ETF热点趋势策略** - **模型构建思路**:通过技术形态和资金流筛选短期热点ETF[31] - **模型具体构建过程**: 1. 筛选最高价与最低价同时呈上涨形态的ETF 2. 计算支撑阻力因子:$$ \text{斜率} = \frac{\text{最高价}_{20日回归系数}}{\text{最低价}_{20日回归系数}} $$ 3. 选择换手率提升明显的ETF:$$ \text{换手率比} = \frac{\text{近5日换手率}}{\text{近20日换手率}} $$ 4. 对筛选出的10只ETF构建风险平价组合[31] 3. **模型名称:资金流共振策略** - **模型构建思路**:结合两融资金与大单资金流向寻找行业配置机会[35] - **模型具体构建过程**: 1. 构建行业融资融券资金因子: $$ \text{融资因子} = \text{Barra市值中性化}(\text{融资净买入-融券净卖出})_{50日均值环比} $$ 2. 构建行业主动大单资金因子: $$ \text{大单因子} = \frac{\text{行业净流入}}{\text{年成交量时序中性化}} $$ 3. 在主动大单因子头部行业中剔除融资因子极端多头行业[35] - **模型评价**:2018年以来年化超额收益13.5%,IR达1.7[35] 模型的回测效果 1. **三维择时框架**: - 2025年8月给出震荡上涨信号[7] - 历史回测显示信号胜率68%[19] 2. **ETF热点趋势策略**: - 本周组合含金融(32.69%)、创新药(5.67%)等ETF[32] - 近一月资金净流入194.56亿元[32] 3. **资金流共振策略**: - 本周超额收益-1.7%(相对行业等权)[35] - 年化换手率450%[35] 量化因子与构建方式 1. **因子名称:风格因子群** - **因子构建思路**:采用Barra框架体系监测市场风格特征[43] - **因子具体构建过程**: - 动量因子:过去12个月收益率[43] - 流动性因子:$$ \text{Amihud非流动性指标} $$ - 估值因子:EP、BP等传统价值指标[43] 2. **因子名称:Alpha因子群** - **因子构建思路**:通过财务指标挖掘超额收益来源[45] - **因子具体构建过程**: - yoy_accpayable:$$ \frac{\text{应付账款}_t - \text{应付账款}_{t-12}}{\text{应付账款}_{t-12}} $$ - roe_q_delta_adv:$$ \text{ROE}_q - \text{ROE}_{q-4} $$ (含预告调整)[47] - cur_liab_yoy:流动负债同比增长率[47] 因子的回测效果 1. **风格因子**: - 动量因子周收益+2.05%[43] - 流动性因子周收益+3.38%[43] - 估值因子周收益-2.41%[43] 2. **Alpha因子**: - yoy_accpayable周超额3.51%[47] - roe_q_delta_adv在沪深300中超额8.58%[49] - cur_liab_yoy周超额3.37%[47]