可转债配置

搜索文档
金融工程定期:8月转债配置:转债估值偏贵,看好偏股低估风格
开源证券· 2025-08-17 13:16
根据提供的研报内容,以下是量化模型与因子的详细总结: 量化模型与构建方式 1. **模型名称**:转债综合估值因子 **模型构建思路**:通过结合转股溢价率偏离度和理论价值偏离度(蒙特卡洛模型)两个因子,构建综合估值因子以衡量转债的估值水平[19] **模型具体构建过程**: - 转股溢价率偏离度 = 转股溢价率 − 拟合转股溢价率(衡量转股溢价率相对于拟合值的偏离度) - 理论价值偏离度 = 转债收盘价 / 理论价值 - 1(蒙特卡洛模拟计算理论价值,考虑转股、赎回、下修、回售条款) - 综合估值因子公式: $$Rank(转股溢价率偏离度) + Rank(理论价值偏离度)$$ **模型评价**:综合因子在偏股、平衡、偏债转债中表现稳健,尤其适用于平衡型和偏债型转债[19][20] 2. **模型名称**:转债风格轮动模型 **模型构建思路**:基于市场情绪指标(动量+波动率偏离度)对低估风格指数进行动态配置[26] **模型具体构建过程**: - 计算单个转债的20日动量和波动率偏离度 - 在低估风格指数内部取中位数作为市场情绪指标 - 轮动规则:按指标逆序排名,优先配置排名低的风格;若排名相同则等权配置,全选时默认配置平衡低估风格 - 公式: $$Rank(转债20日动量) + Rank(波动率偏离度)$$ **模型评价**:通过动态调整风格暴露,显著提升组合收益风险比[26][27] --- 量化因子与构建方式 1. **因子名称**:转股溢价率偏离度 **因子构建思路**:衡量实际转股溢价率与拟合值的差异[20] **因子具体构建过程**: - 截面拟合转股溢价率与转股价值的关系曲线(公式见附录) - 偏离度 = 实际值 − 拟合值 **因子评价**:在全域和分域中均具有稳定区分能力[20] 2. **因子名称**:理论价值偏离度(蒙特卡洛模型) **因子构建思路**:通过期权定价模型计算转债理论价值与实际价格的差异[20] **因子具体构建过程**: - 蒙特卡洛模拟10000条路径,考虑条款约束 - 使用同信用同期限利率作为贴现率 - 偏离度 = 市场价格 / 理论价值 - 1 **因子评价**:在偏股型转债中表现突出[20] 3. **因子名称**:百元转股溢价率 **因子构建思路**:标准化转股价值=100时的溢价率,用于时序比较[4][43] **因子具体构建过程**: - 拟合公式: $$y_{i}=\alpha_{0}+\,\alpha_{1}\cdot\,{\frac{1}{x_{i}}}+\epsilon_{i}$$ - 代入x=100计算百元溢价率 4. **因子名称**:修正YTM - 信用债YTM **因子构建思路**:剥离转股条款影响,比较偏债转债与信用债的真实收益差[5][44] **因子具体构建过程**: - 修正YTM = 转债YTM × (1−转股概率) + 预期转股收益 × 转股概率 - 转股概率通过BS模型计算 - 取截面中位数作为市场整体性价比指标 --- 模型的回测效果 | 模型/指数 | 年化收益 | 年化波动 | 最大回撤 | IR | 卡玛比率 | 月度胜率 | |--------------------------|----------|----------|----------|-------|----------|----------| | 偏股转债低估指数 | 26.10% | 20.55% | -22.94% | 1.27 | 1.14 | 62.22% | | 平衡转债低估指数 | 14.80% | 11.82% | -15.95% | 1.25 | 0.93 | 62.22% | | 偏债转债低估指数 | 13.37% | 9.43% | -17.78% | 1.42 | 0.75 | 57.78% | | 转债风格轮动组合 | 25.27% | 16.68% | -15.89% | 1.51 | 1.59 | 65.56% | | 原风格指数(等权基准) | 9.75% | 11.66% | -20.60% | 0.84 | 0.47 | 60.00% | 数据来源:[23][30][32] --- 因子的回测效果 1. **低估值增强效果**(近3周): - 偏股转债超额:-2.62% - 平衡转债超额:-0.41% - 偏债转债超额:0.20% 数据来源:[22] 2. **估值因子分位数**: - 百元转股溢价率:滚动5年分位数94.9%[4][16] - 修正YTM差:中位数-2.36%[5][16]
金融工程定期:6月转债配置:转债估值适中,看好偏股低估风格
开源证券· 2025-06-17 19:12
根据研报内容,以下是量化模型与因子的详细总结: 量化因子与构建方式 1. **因子名称**:转股溢价率偏离度 - **构建思路**:衡量转股溢价率相对于拟合值的偏离度,使不同平价的转债可比[21] - **具体构建过程**: $$y_{i}=\alpha_{0}+\,\alpha_{1}\cdot\,{\frac{1}{x_{i}}}+\epsilon_{i}$$ 其中,$y_i$为第$i$只转债的转股溢价率,$x_i$为转股价值。通过截面数据拟合转股溢价率与转股价值的关系曲线,计算偏离度[21][44] 2. **因子名称**:理论价值偏离度(蒙特卡洛模型) - **构建思路**:通过蒙特卡洛模拟计算转债理论价值,衡量价格与理论价值的偏离[21] - **具体构建过程**: 1. 模拟10000条路径,考虑转股、赎回、下修、回售条款 2. 以同信用同期限利率为贴现率计算理论价值 3. 因子值=转债收盘价/理论价值-1[21] 3. **因子名称**:转债综合估值因子 - **构建思路**:融合转股溢价率偏离度和理论价值偏离度,提升因子稳定性[21] - **具体构建过程**: $$综合估值因子 = Rank(转股溢价率偏离度) + Rank(理论价值偏离度)$$ 对两个因子分别排名后相加[21] 4. **因子名称**:修正YTM - 信用债YTM - **构建思路**:剥离转股条款影响,比较偏债型转债与信用债的配置价值[4][45] - **具体构建过程**: $$修正YTM = 转债YTM \times (1-转股概率) + 预期转股收益率 \times 转股概率$$ 转股概率通过BS模型计算,最终取截面中位数[4][45][46] 5. **因子名称**:转债市场情绪捕捉指标 - **构建思路**:结合动量和波动率识别市场情绪[29] - **具体构建过程**: $$市场情绪指标 = Rank(20日动量) + Rank(波动率偏离度)$$ 在风格指数内部取因子中位数[29][30] 量化模型与构建方式 1. **模型名称**:转债低估指数构建模型 - **构建思路**:通过估值因子筛选低估转债,分风格构建指数[21][22] - **具体构建过程**: 1. 按平底溢价率划分风格(偏股>15%,偏债<-15%,其余为平衡型) 2. 偏股型使用理论价值偏离度因子,其他风格用综合估值因子 3. 选取因子前1/3且满足:正股市值>5亿、非ST、评级≥AA-等8项风控条件[21][22] 2. **模型名称**:转债风格轮动模型 - **构建思路**:根据市场情绪指标动态配置低估风格[29][30] - **具体构建过程**: 1. 计算各风格指数的市场情绪指标排名 2. 优先配置排名低的风格,若排名相同则等权配置 3. 双周频调仓,全仓投资单一风格[29][30][35] 因子回测效果 | 因子/模型 | 年化收益 | 年化波动 | IR | 最大回撤 | 测试周期 | |--------------------------|----------|----------|-------|----------|-------------------| | 偏股转债低估指数 | 24.91% | 20.39% | 1.22 | -22.83% | 2018-2025[24] | | 平衡转债低估指数 | 13.77% | 11.87% | 1.16 | -16.04% | 2018-2025[24] | | 偏债转债低估指数 | 12.21% | 9.45% | 1.29 | -17.59% | 2018-2025[24] | | 转债风格轮动模型 | 24.23% | 16.54% | 1.47 | -15.54% | 2018-2025[35] | | 低估值因子(偏股) | - | - | - | - | 近4周超额1.33%[23]| 模型评价 - **估值因子**:理论价值偏离度在偏股型转债上表现优异,综合估值因子对平衡/偏债型更有效[21] - **风格轮动**:通过动量+波动率捕捉市场情绪,历史信息比率达1.47显著优于基准[35] - **风控设计**:通过正股市值、盈利等条件有效控制信用风险[22]
转债配置月报:5月转债配置:转债估值适中-20250520
开源证券· 2025-05-20 21:11
根据提供的研报内容,以下是量化模型与因子的详细总结: 量化模型与构建方式 1. **模型名称**:转债综合估值模型 - **构建思路**:通过转股溢价率偏离度和理论价值偏离度(蒙特卡洛模型)两个因子融合,构建综合估值因子以筛选低估转债[24][25] - **具体构建过程**: 1. 计算转股溢价率偏离度:$$ \text{转股溢价率偏离度} = \text{转股溢价率} - \text{拟合转股溢价率} $$ 2. 计算理论价值偏离度(蒙特卡洛模型):$$ \text{理论价值偏离度} = \frac{\text{转债收盘价}}{\text{理论价值(蒙特卡洛模拟)}} - 1 $$ 3. 综合因子构建:$$ \text{转债综合估值因子} = \text{Rank(转股溢价率偏离度)} + \text{Rank(理论价值偏离度)} $$ 蒙特卡洛模拟中,每条路径考虑转股、赎回、下修、回售条款,贴现率采用同信用同期限利率[25][26] - **模型评价**:在平衡型和偏债型转债中表现较优,偏股型转债中理论价值偏离度单独效果更好[24] 2. **模型名称**:转债风格轮动模型 - **构建思路**:基于转债动量和波动率偏离度捕捉市场情绪,对偏股/平衡/偏债低估指数进行轮动配置[31][32] - **具体构建过程**: 1. 计算单券层面20日动量和波动率偏离度 2. 在低估指数内部取因子中位数作为市场情绪指标 3. 组合信号生成:$$ \text{市场情绪捕捉指标} = \text{Rank(20日动量)} + \text{Rank(波动率偏离度)} $$ 4. 轮动规则:选择指标排名最低的指数,若并列则等权配置,全选时默认配置平衡低估风格[32][33] 量化因子与构建方式 1. **因子名称**:转股溢价率偏离度 - **构建思路**:衡量实际转股溢价率与拟合值的差异[25] - **具体构建过程**: 1. 截面拟合转股溢价率与转股价值的关系曲线:$$ y_i = \alpha_0 + \alpha_1 \cdot \frac{1}{x_i} + \epsilon_i $$ 2. 取转股价值=100时的拟合值作为基准,计算偏离度[46] 2. **因子名称**:理论价值偏离度(蒙特卡洛模型) - **构建思路**:通过期权定价模型计算转债理论价值与实际价格的差异[25] - **具体构建过程**: 1. 蒙特卡洛模拟1万条路径,考虑转股、赎回、下修、回售条款 2. 以同信用等级同期限利率贴现现金流 3. 计算收盘价与理论价值的比率偏离[25][47] 3. **因子名称**:修正YTM - 信用债YTM - **构建思路**:剥离转股条款影响,比较偏债转债与信用债的收益率差异[4][47] - **具体构建过程**: 1. 计算转股概率N(d2)(BS模型) 2. 修正YTM公式:$$ \text{修正YTM} = \text{转债YTM} \times (1-\text{转股概率}) + \text{预期转股收益率} \times \text{转股概率} $$ 3. 取截面中位数:$$ \text{中位数} = \text{median}\{X_1,X_2,...,X_n\} $$[48] 模型的回测效果 1. **转债综合估值模型** - 偏股转债低估指数:年化收益24.83%,波动率20.42%,IR 1.22[28] - 平衡转债低估指数:年化收益13.87%,波动率11.92%,IR 1.16[28] - 偏债转债低估指数:年化收益12.21%,波动率9.49%,IR 1.29[28] 2. **转债风格轮动模型** - 年化收益24.14%,波动率16.53%,IR 1.46,最大回撤-15.54%[38] - 2025年以来收益23.98%,近4周收益8.58%[35][37] 因子的回测效果 1. **估值因子增强效果** - 近4周超额:偏股转债1.56%,平衡转债0.10%,偏债转债0.18%[27] - 长期IR提升:偏股转债从0.58提升至1.22,平衡转债从0.61提升至1.16[28] 2. **市场情绪因子** - 动量+波动率偏离度组合在2018-2025年实现年化超额15.79%[37][38]
转债配置月报:4月转债配置:看好平衡低估风格转债-20250421
开源证券· 2025-04-21 16:46
量化模型与构建方式 1. **模型名称**:转债综合估值模型 - **模型构建思路**:通过融合转股溢价率偏离度和理论价值偏离度(蒙特卡洛模型)两个因子,构建综合估值因子以筛选低估转债[19] - **模型具体构建过程**: 1. 计算单只转债的转股溢价率偏离度:$$转股溢价率偏离度 = 转股溢价率 - 拟合转股溢价率$$,其中拟合转股溢价率通过截面数据回归得到[20] 2. 计算理论价值偏离度(蒙特卡洛模型):$$理论价值偏离度 = \frac{转债收盘价}{理论价值} - 1$$,理论价值通过蒙特卡洛模拟(10,000条路径)考虑转股、赎回、下修等条款,并以同信用等级同期限利率贴现[20] 3. 因子融合:对两个因子分别排名后等权相加:$$转债综合估值因子 = Rank(转股溢价率偏离度) + Rank(理论价值偏离度)$$[20] - **模型评价**:该模型在平衡型和偏债型转债中表现更优,能系统性捕捉估值回归效应[19] 2. **模型名称**:转债风格轮动模型 - **模型构建思路**:结合市场情绪指标(动量和波动率偏离度)对低估风格指数进行动态配置[27] - **模型具体构建过程**: 1. 计算单只转债的20日动量和波动率偏离度 2. 在低估指数内部取因子中位数作为指数情绪指标 3. 对三类低估指数(偏股/平衡/偏债)的情绪指标排名并相加:$$市场情绪捕捉指标 = Rank(20日动量) + Rank(波动率偏离度)$$ 4. 选择综合排名最低的指数配置,若并列则等权或优先配置平衡风格[28] - **模型评价**:通过双周频调仓实现风格切换,历史信息比率显著优于基准[33] --- 量化因子与构建方式 1. **因子名称**:转股溢价率偏离度 - **因子构建思路**:衡量实际转股溢价率与理论拟合值的差异[20] - **因子具体构建过程**: 1. 截面回归拟合转股溢价率与转股价值的关系:$$y_i = \alpha_0 + \alpha_1 \cdot \frac{1}{x_i} + \epsilon_i$$,其中$y_i$为第$i$只转债的转股溢价率,$x_i$为转股价值[44] 2. 计算偏离度:$$转股溢价率偏离度 = 实际转股溢价率 - 拟合值$$[20] 2. **因子名称**:理论价值偏离度(蒙特卡洛模型) - **因子构建思路**:通过期权定价模型识别转债价格与理论价值的偏差[20] - **因子具体构建过程**: 1. 蒙特卡洛模拟10,000条路径,考虑转股、赎回、下修、回售条款 2. 以同信用等级同期限利率贴现计算理论价值 3. 计算偏离度:$$理论价值偏离度 = \frac{收盘价}{理论价值} - 1$$[20] 3. **因子名称**:修正YTM-信用债YTM - **因子构建思路**:剥离转股条款影响后比较偏债型转债与信用债的收益率差异[5] - **因子具体构建过程**: 1. 计算修正YTM:$$修正YTM = 转债YTM \times (1 - 转股概率) + 预期转股年化收益 \times 转股概率$$,其中转股概率通过BS模型计算[45] 2. 取与同等级信用债YTM差值的中位数[46] --- 模型的回测效果 1. **转债综合估值模型**: - 偏股转债低估指数:年化收益23.06%,波动率20.43%,IR 1.13[23] - 平衡转债低估指数:年化收益13.56%,波动率11.94%,IR 1.14[23] - 偏债转债低估指数:年化收益11.85%,波动率9.49%,IR 1.25[23] 2. **转债风格轮动模型**: - 年化收益23.38%,波动率16.48%,IR 1.42,月度胜率65.12%[33] --- 因子的回测效果 1. **估值因子增强效果**(近4周): - 偏股转债超额0.9%,平衡转债超额1.2%,偏债转债超额-0.3%[22] 2. **百元转股溢价率**:当前滚动5年分位数40%[15] 3. **修正YTM-信用债YTM**:当前中位数0.38%[5]