Workflow
TPU v7 Ironwood
icon
搜索文档
群狼围上来了,黄仁勋最大的竞争对手来了
36氪· 2025-12-12 10:16
黄仁勋终于得到了他最想要的东西。 本周美国政府正式批准英伟达向中国以及其他"经批准的客户"出售高端的H200 GPU芯片,但需要向美国政府缴纳25%的销售提成。这一提成 比例同样适用于AMD、英特尔等其他美国芯片巨头。不过,英伟达最新的Blackwell和未来的Rubin系列GPU仍然禁止出口。 这标志着黄仁勋长达数月的游说取得成功。过去半年时间,他不断造访佛罗里达与华盛顿,随着特朗普总统一道出访和出席国宴,向白宫宴会厅建设工程 捐款,就是为了这一刻。就在上周,他再一次来到白宫会见总统,终于如愿以偿得到了解锁禁运令。 受这一利好消息推动,英伟达股价盘后应声上涨。受美国政府连续多道芯片加码禁运令限制,过去两年时间,英伟达一步步失去迅猛增长的中国市场,丢 掉了在AI GPU市场原先高达95%的份额。在英伟达最核心的数据中心业务,中国市场的营收占比也从原先的四分之一急剧下滑。 虽然英伟达数据中心业务营收高达1300亿美元(最近财年),但却存在一个巨大隐患:客户集中度过高,过度依赖于几大AI巨头。其中,前两大客户营收占 比39%,前三大客户营收占比高达53%。 据媒体猜测,黄仁勋的前五大客户正是:微软、谷歌、亚马逊、 ...
群狼围上来了!黄仁勋最大的竞争对手来了
新浪科技· 2025-12-12 08:24
美国政府批准英伟达对华销售H200芯片 - 美国政府正式批准英伟达向中国及其他“经批准的客户”出售高端H200 GPU芯片,但需缴纳25%的销售提成,此比例同样适用于AMD、英特尔等其他美国芯片巨头 [1] - 英伟达最新的Blackwell和未来的Rubin系列GPU仍然被禁止出口 [1] - 受此利好消息推动,英伟达股价盘后应声上涨 [1] 英伟达在中国市场的现状与影响 - 过去两年,受美国芯片禁运令限制,英伟达逐步失去了迅猛增长的中国市场,丢掉了在AI GPU市场原先高达95%的份额 [1] - 在英伟达最核心的数据中心业务中,中国市场的营收占比从原先的四分之一急剧下滑 [1] - 黄仁勋曾公开表示公司在中国市场“完全出局,市场份额已经归零” [2] - 即便缴纳25%提成,重新进入中国市场对英伟达意义重大,因为中国AI GPU市场规模今年估计高达200亿-300亿美元 [2] 主要云服务巨头的自研芯片战略 - 英伟达最大的AI芯片客户——谷歌、亚马逊、微软(超大规模云服务商)正在加速普及自研芯片,以减少对英伟达的依赖 [2] - 英伟达数据中心业务营收高达1300亿美元(最近财年),但客户集中度过高,前两大客户营收占比39%,前三大客户占比高达53% [2] - 前三大客户(微软、谷歌、亚马逊)加速转用自研芯片,并拉拢英伟达的第四大客户(据媒体猜测为Meta),这直接威胁英伟达的订单和市场竞争地位 [3] 亚马逊AWS的自研芯片进展 - 亚马逊AWS发布新一代自研AI芯片Trainium 3,被媒体誉为“对英伟达的直接宣战” [5][6] - Trainium 3训练速度比前代快4倍,成本减半,与英伟达相当的GPU系统相比可节省50%训练费用 [6] - 现场演示显示,Trainium 3在Llama 3.1训练中,仅需24小时完成相当于H100集群一周的任务 [6] - AWS将Trainium 3定位为英伟达GPU的低成本替代品,采用其Neuron软件栈和Trainium实例的客户,可将大型模型的训练和推理成本降低高达约50% [6] - AWS计划用自研芯片、模型和部署方案掌控从训练到推理的整条AI赛道 [7] - AWS在云计算市场份额超过三成(31%),领先于微软(20%)和谷歌(16%) [7] - OpenAI与AWS签署了七年价值380亿美元的AI基础设施服务协议,Anthropic等初创公司已转向Trainium,节省了超过三成的预算 [7] 谷歌的自研芯片进展 - 谷歌发布第七代自研TPU芯片v7 Ironwood,单芯片FP8计算能力达4.6 PFLOPS,比第五代TPU提升10倍,是第六代的4倍 [8][10] - 相比英伟达Blackwell,Ironwood在能效上领先20%,功耗仅300W/芯片 [11] - 谷歌TPU已覆盖从边缘设备到超大规模Pod的全栈,不仅是硬件,更是云生态的“杀手锏” [11] - 2025年,谷歌的AI芯片市场份额预计已达到8%,尤其在占AI算力80%的推理领域 [12] - 谷歌声称使用TPU可将训练成本降低40%,并已吸引Meta等第三方客户 [12] - Meta计划在2027年部署谷歌TPU,而Meta是英伟达AI芯片的第四大客户 [12] - 谷歌TPU的外部销售占比已达到20% [22] - Anthropic与谷歌签署价值数百亿美元的协议,计划使用多达100万片TPU,其中包括40万片Ironwood [23] 微软的自研芯片进展与挑战 - 微软自研芯片首代Maia 100于2024年推出,已部署于Azure数据中心,预计比英伟达H100芯片成本低40% [13] - 但原计划今年发布的Maia 200(代号Braga)的大规模量产已推迟至2026年,主要由于设计变更、仿真不稳定等技术因素以及台积电产能瓶颈 [13][15] - 微软未来将“主要使用自家芯片”,以减少对英伟达的严重依赖 [15] - 由于在台积电产能竞争中处于非优先级,微软转向英特尔18A节点计划在明年实现量产 [16] - 如果Maia二代不能及时规模部署,微软明年可能还要投入100亿美元购买英伟达芯片 [16] 英伟达的竞争优势与市场地位 - 英伟达是生成式AI时代的领军公司,在AI芯片这个万亿级赛道中,其GPU产品线几乎垄断了八成以上的市场份额 [2] - 公司是全球最具价值的上市公司,市值一度突破5万亿美元 [2] - 英伟达Blackwell架构B200 GPU单芯片FP8计算能力达20 PFLOPS,比前代H100提升4倍 [18] - 在推理任务中,Blackwell的能效比谷歌TPU高出30% [18] - 英伟达的核心护城河在于其CUDA平台,支持4000多个AI框架和库,拥有庞大的开发者生态 [18] 未来市场竞争格局展望 - 2025年三大巨头发布最新自研芯片,预示着2026年将是“性能 vs 成本”的巅峰对决 [18] - 性能技术是英伟达的核心优势,而巨头自研芯片主要强调成本优势 [18] - 亚马逊Trainium3宣称可将训练成本降至前代的50%,谷歌Ironwood TPU在推理任务中能效比英伟达H100高出20-30% [19] - AI巨头正通过“渐进式”策略蚕食英伟达的CUDA优势,例如谷歌的JAX和PyTorch/XLA集成已覆盖70% AI工作负载 [20] - 亚马逊AWS计划在Trainium4上集成NVLink兼容技术,实现与英伟达GPU无缝混合部署,预计训练费用再降40% [20] - 2027年商用的谷歌TPU v8成本优势或达50%以上 [20] - 亚马逊AWS的目标是在明年达到50%的自研芯片占比,推动其在AI云市场份额从31%升至35% [22] - AMD CEO苏姿丰认为,在未来五年内,ASIC类加速器(如三大巨头的自研芯片)可能占据20%-25%的市场份额,GPU仍将占据市场大部分份额 [26] - 苏姿丰还计划AMD在未来3-5年,抢到两位数的市场份额 [26] - 英伟达在中国市场同样面临华为、寒武纪等本土竞争对手 [26]
群狼围上来了!黄仁勋最大的竞争对手来了|硅谷观察
新浪财经· 2025-12-12 07:28
硅谷观察/郑峻 黄仁勋终于得到了他最想要的东西。 本周美国政府正式批准英伟达向中国以及其他"经批准的客户"出售高端的H200 GPU芯片,但需要向美 国政府缴纳25%的销售提成。这一提成比例同样适用于AMD、英特尔等其他美国芯片巨头。不过,英 伟达最新的Blackwell和未来的Rubin系列GPU仍然禁止出口。 这标志着黄仁勋长达数月的游说取得成功。过去半年时间,他不断造访佛罗里达与华盛顿,随着特朗普 总统一道出访和出席国宴,向白宫宴会厅建设工程捐款,就是为了这一刻。就在上周,他再一次来到白 宫会见总统,终于如愿以偿得到了解锁禁运令。 受这一利好消息推动,英伟达股价盘后应声上涨。受美国政府连续多道芯片加码禁运令限制,过去两年 时间,英伟达一步步失去迅猛增长的中国市场,丢掉了在AI GPU市场原先高达95%的份额。在英伟达 最核心的数据中心业务,中国市场的营收占比也从原先的四分之一急剧下滑。 心急如焚的黄仁勋在两个月前公开抱怨,"我们已经失去了全球最大的市场之一,在中国市场完全出 局,市场份额已经归零。"即便是向美国政府缴纳四分之一的提成,对英伟达的业绩营收也意义重大, 因为中国AI GPU今年规模估计高达2 ...
电子行业2026年投资策略:AI创新与存储周期
广发证券· 2025-12-10 17:08
核心观点 - 报告核心观点认为,AI创新与存储周期是电子行业2026年投资策略的两大主线 AI模型创新与资本开支是产业发展的核心动力,驱动AI产业链协同发展 同时,AI推理需求驱动存储价格上涨和架构升级,存储周期持续向上 [1][4] AI创新:模型创新与CAPEX筑基,AI产业链协同发展 需求:模型创新与CAPEX筑基 - AI产业链包括AI硬件、AI CAPEX和AI模型与应用三大环节,其中AI CAPEX是驱动上游硬件发展的核心动力源 [12] - 模型创新是AI发展的核心动力,大模型在Chatbot、Coding、多模态等场景快速渗透,持续拓展应用领域 [14] - AI CAPEX构筑AI周期的基石,云厂商、头部企业及主权国家的资本开支具有刚性与延续性,为上游硬件环节提供订单与现金流支撑 [14] - 海外云厂商及Oracle的CAPEX/OCF在2025年第三季度环比有所下降,但仍处于可控范围,未来AI周期持续向上 [36] 模型创新进展 - **谷歌**:持续突破多模态模型边界,产品矩阵覆盖内容理解、生成到虚拟世界交互全链条,多模态生成在清晰度、动作可控性与叙事连贯性上已具备商业化价值临界点 [19] - **OpenAI**:通过记忆功能、GPT-5.1及群聊功能升级个性化体验,内部预测2025年收入将达130亿美元,同比增约350%,2030年收入预期上调至2000亿美元 [25][28] - **Anthropic**:在企业级LLM API市场份额达32%,内部预测2025年营收38亿美元,2028年目标700亿美元,毛利率有望从-94%跃升至77% [29] 算力:GPU与ASIC共舞 - AI算力竞争已转向“专用硬件+计算平台”的生态构建,展现从通用计算到专用AI计算的产业演进路径 [42] - **谷歌**:发布TPU v7 Ironwood,单芯片峰值算力达4614 TFLOPs,性能较前代提升4倍以上,支持单SuperPod扩展到9216个芯片,构建了从芯片集群到云服务的完整生态闭环 [45][48] - **英伟达**:确立年度产品更新节奏,发布Vera Rubin NVL144和Rubin Ultra NVL576平台,后者性能可达Blackwell Ultra GB300 NVL72平台的14倍,通过“硬件+软件+网络”垂直生态巩固市场地位 [52][56] - **AWS**:宣布研发下一代定制芯片Trainium4,将集成英伟达NVLink Fusion互连技术和UALink,旨在提升计算、内存和互连性能 [58] - **国产算力**:从“单点突围”转向“系统升维”,华为、阿里等厂商推出超节点解决方案,华为昇腾芯片规划以一年一代、算力翻倍的速度演进 [61][63][64] PCB:价值量提升与扩产 - **单GPU PCB价值量持续提升**:英伟达Rubin系列新增midplane、CPX板及正交背板等设计,驱动PCB规格升级 测算显示,Vera Rubin NVL144若包含正交背板,单GPU PCB价值量预计达1313美元,较A100/H100时代提升显著 [70][74] - **单ASIC PCB价值量持续提升**:谷歌TPU v7和AWS Trainium3的架构升级对PCB提出更高要求 测算显示,2025年AWS T系列单ASIC对应PCB价值量预计超700美元,Google TPU约363美元 [78][86] - **AI PCB市场规模高速增长**:预计AI服务器PCB市场规模将从2025年的49亿美元增长至2026年的102亿美元,同比增长108% 其中ASIC AI服务器PCB市场规模预计从32亿美元增至63亿美元,同比增长94% [89] - **国内PCB厂商积极扩产**:沪电股份、生益电子、景旺电子等国内头部厂商通过海外建厂、国内技改等方式积极扩充AI PCB产能 [90][93] 存储:AI推理驱动增长 - AI推理采用分级存储架构,HBM、DRAM、SSD、HDD协同支撑高效计算 [101] - AI推理,特别是超长上下文和多模态需求,驱动AI存储快速增长 测算显示,2026年10个谷歌级推理应用所需存储容量将达48EB [106] - 英伟达GPU配置持续升级,单GPU对应的HBM容量从H100的80GB提升至VR300 Ultra的1024GB,同时CPX系列新增GDDR7内存 [108] 电源:800V HVDC升级 - 为满足MW级机柜功耗需求,英伟达提出800V HVDC供电架构,可减少电能转换环节、降低损耗并简化热管理 [111] - SiC和GaN功率半导体是实现800V HVDC架构的关键,能实现更高功率密度与能效 [112] - 采用超高压SiC MOSFET的固态变压器可将高压交流电直接转换为800V直流,进一步提升能效 [119] - 预计至2030年,全球SiC&GaN功率器件市场规模将达25.64亿美元 [121] 存储周期:AI驱动价格上涨,扩产与升级同发力 价格与盈利 - AI驱动云侧和端侧存储搭载量显著增长,存储价格持续上涨,存储原厂毛利率显著提升 [4] 扩产:优先投向HBM - 海外存储原厂资本开支进入上行区间,产能优先投向HBM,传统DRAM和NAND投产较为谨慎 [4] 架构升级与设备需求 - **DRAM升级**:4F2+CBA工艺延续主流DRAM升级趋势;3D堆叠DRAM显著提升带宽,指向AI推理市场 [4] - **NAND升级**:3D NAND堆叠层数持续升级 [4] - 存储架构升级为设备需求带来新机遇 [4] 产业模式与接口芯片 - 存储代工模式迎来产业变革机会 [4] - 接口芯片如MRDIMM和VPD为产业打开新空间 [4] 投资建议 - 建议关注AI产业链相关标的,包括模型创新与CAPEX驱动下的算力、存储、PCB、电源等环节 [4] - 建议关注存储产业链相关标的,聚焦AI驱动下的价格上涨、架构升级及产业模式变革机会 [4]
谷歌特斯拉“神仙打架”,自动驾驶红利怎么抓?
新浪基金· 2025-11-28 08:50
谷歌市值与业绩表现 - 公司市值在9月初至11月25日期间飙升52%,突破3.91万亿美元,成为全球第四家市值突破3万亿美元的企业 [1][3][4] - 市值增长由多重因素驱动,包括9月初反垄断裁决缓解拆分担忧、9月中AI乐观情绪升温、10月末第三季度财报超预期、11月初AI战略获广泛认可、11月中巴菲特旗下伯克希尔披露49亿美元持仓 [4] - 关键技术产品发布推动股价,包括11月6日TPU v7 Ironwood全面商用及11月18日起Gemini 3大模型发布引发突破性上涨行情 [4] 自动驾驶业务竞争格局 - Waymo运营超过2500辆自动驾驶出租车,自动驾驶里程超1亿英里(纯自动驾驶),服务覆盖5个城市并计划扩展至20个以上 [6][7][8] - 特斯拉计划在2025年底前部署1500辆Robotaxi,自动驾驶里程为65亿英里(辅助自动驾驶,需人工监控),服务覆盖计划从8-10个城市扩展至2026年30个城市 [6][7][9] - Waymo采用“激光雷达+摄像头+毫米波雷达”多模态融合方案,车辆成本为特斯拉的4倍以上;特斯拉坚持纯视觉技术路线,具备成本优势 [7][10] 自动驾驶商业化进展 - Waymo开启高速公路付费服务,构建“出行服务+技术输出”商业模式,计划2026年前新增拉斯维加斯等三座城市,将业务覆盖扩展至12个美国主要城市 [8][9] - Waymo于2025年10月宣布计划在伦敦启动自动驾驶测试,预计2026年在欧洲推出商业化服务 [9] - 特斯拉Robotaxi服务已在奥斯汀和旧金山湾区落地,车辆需配备安全监控人员;公司宣称其辅助驾驶技术每680万英里仅发生一起事故,安全性为美国平均驾驶员的十倍 [9] 港股汽车板块ETF概况 - 港股汽车50ETF(认购代码:520783)跟踪中证港股通汽车指数,重仓乘用车龙头,权重超68% [11][12] - 前三大权重股为小鹏汽车(权重15.272%)、比亚迪股份(权重10.585%)、吉利汽车(权重10.335%) [12] - 近一月跨境港股ETF资金流入588.65亿元,受益于汽车行业政策利好、新势力盈利修复及南向资金持续流入 [13]