Workflow
端到端自动驾驶
icon
搜索文档
入职小米两个月了,还没摸过算法代码。。。
自动驾驶之心· 2025-07-16 16:46
自动驾驶行业趋势与职业发展 - 自动驾驶行业当前处于快速发展阶段,大模型与端到端技术成为核心方向[4][6] - 小米汽车在自动驾驶领域势头强劲,虽薪资水平中等但短期发展潜力较大[7] - 医学图像与工业检测领域技术门槛低于自动驾驶,可作为从业者备选方向[6] 求职与技能提升策略 - 实习经历需适当包装,重点突出与目标岗位相关的技术亮点[3][6] - 建议利用公司资源补充自动驾驶算法实践经验(如BEV、端到端),同时学习VLA、SFT等技术[6] - 需同步准备秋招与实习转正,多offer可增强薪资谈判能力[5][6] 技术研究方向与资源 - 视觉大语言模型、世界模型、扩散模型和端到端自动驾驶为四大前沿方向[10] - 自动驾驶数据集覆盖2D/3D目标检测、语义分割、轨迹预测等任务,包括NuScenes、BDD100K等主流数据集[25][26] - 扩散模型在自动驾驶中应用于场景生成、3D补全等任务,如DriveDreamer、MagicDriveDiT等创新方法[43] 社区与学习平台 - 知识星球提供自动驾驶课程、硬件资料及招聘信息,已形成学术-产品-就业闭环生态[8][62] - 社区目标3年内聚集万人规模,现有华为天才少年及领域专家入驻[8] - 会员可获取5000+干货内容、100+场行业直播及求职咨询等权益[62] 端到端自动驾驶进展 - 开源仓库收录E2E驾驶最新研究成果,涵盖感知、预测、规划全流程[45][49] - 特斯拉FSD验证了端到端模型可行性,但开环评估仍存争议[49] - 典型方法包括DriveGPT4(大模型驱动)、VADv2(概率规划)等[52][55]
一文尽览!近一年自动驾驶VLA优秀工作汇总~
自动驾驶之心· 2025-07-15 20:30
自动驾驶VLA技术进展 - 端到端自动驾驶成为主流范式,视觉-语言-动作(VLA)方法在学术界和工业界快速落地[2] - 理想、文远知行、小米、小鹏等主机厂正在大力尝试VLA技术的量产应用[2] - 2025年学术界和工业界涌现大量优秀工作,重点关注VLA落地可行性、扩散模型轨迹可靠性等问题[2] NavigScene技术突破 - 小鹏汽车提出NavigScene,解决局部传感器数据与全局导航信息的关键差距[2] - 开发三种互补方法:导航引导推理、导航引导偏好优化、导航引导VLA模型[2] - 实验显示显著提升感知、预测、规划和问答任务性能,实现超视距推理能力[2][6] - 在NuInstruct基准测试中,Qwen2.5-7B模型表现最佳,多项指标提升明显[5] AutoVLA创新框架 - UCLA提出AutoVLA,统一推理和动作生成的自回归模型[7] - 采用SFT+GRPO两阶段训练,在NAVSIM取得92.12 PDMS指标[9] - 在nuPlan、nuScenes等多个基准测试中展现竞争优势[8] - 实现自适应推理能力,可根据场景复杂度调整思维模式[12] ReCogDrive三阶段训练 - 华科与小米合作提出三阶段训练框架[13] - 收集2.3M高质量QA数据,通过预训练+模仿学习+强化学习流程[14] - 在NAVSIM基准达到89.6 PDMS,创下新SOTA记录[16] - 比之前最佳方法提升5.6 PDMS[16] 数据集与基准建设 - 清华AIR与博世发布Impromptu VLA数据集,包含80K+精选视频片段[17] - 理想汽车推出DriveAction基准,包含16,185个QA对,覆盖2610个驾驶场景[31] - 实验显示视觉和语言输入缺失会导致动作预测准确率下降3.3%-8.0%[31] - 基准建设被认为是行业未来重点发展方向[50] 技术趋势与挑战 - 思维链、空间理解成为标配技术,但车端必要性存疑[50] - 时序处理研究不足,与实际车端需求存在差距[50] - 轨迹输出形式分文本自回归和扩散模型两大路线[50] - 行业缺乏大规模自动驾驶预训练基座模型[50] - NAVSIM指标已逼近人类专家水平,验证技术可行性[50]
面试了很多端到端候选人,发现还是有很多人搞不清楚。。。
自动驾驶之心· 2025-07-13 21:18
端到端自动驾驶技术概述 - 端到端自动驾驶分为一段式端到端和二段式端到端两大技术方向 是当前薪资最高的算法岗位之一 3-5年经验可达百万年薪 [2] - 端到端系统实现从传感器输入到车辆规划/控制信息的直接建模 避免模块化方法间的误差累积 BEV感知打通模块化壁垒 UniAD统一感知和规划任务 [2] - 学术界和工业界聚焦端到端技术 衍生出多种算法流派 UniAD并非最终解 新算法不断涌现 [2] 端到端技术发展现状 - 技术方向包括多模态大模型 BEV感知 强化学习 视觉Transformer 扩散模型等 学习路径复杂 论文数量繁多 知识碎片化 [4] - 高质量文档缺乏 提高入门难度 学习目标驱动导航需结合实战 但缺乏系统指导 难以从理论过渡到实践 [4] - 最新技术流派包括:PLUTO为代表的二段式端到端 UniAD为代表的基于感知的一段式端到端 OccWorld为代表的基于世界模型的一段式端到端 DiffusionDrive为代表的基于扩散模型的一段式端到端 [9] 端到端课程体系 - 课程特点:直击痛点快速入门 构建领域框架提升研究能力 理论结合实践学以致用 [5][6][7] - 课程大纲:端到端算法介绍 背景知识 二段式端到端 一段式端到端与VLA 课程大作业 [11][12][13][15] - 重点章节:一段式端到端与VLA为课程精华 涵盖基于感知/世界模型/扩散模型/VLA的四大子领域 [13] 技术深度解析 - 二段式端到端:分析PLUTO CarPlanner Plan-R1等经典与前沿工作 对比一段式优缺点 [12] - 一段式端到端:UniAD和VAD为奠基作 PARA-Drive为最新进展 世界模型应用广泛 扩散模型实现多模轨迹预测 VLA为当前技术皇冠 [13] - 关键技术:Transformer CLIP LLAVA BEV感知 扩散模型 RLHF GRPO等构成完整技术栈 [14] 课程实施细节 - 开课时间8月15日 三个月完成 采用离线视频教学+VIP群答疑+三次线上答疑模式 [20] - 学员需自备4090及以上GPU 具备自动驾驶基础 熟悉Transformer 强化学习 BEV感知等技术概念 [22] - 预期成果:达到1年经验算法工程师水平 掌握端到端技术框架 可复现主流算法 应用于实际项目 [22]
某智驾公司一言难尽的融资。。。
自动驾驶之心· 2025-07-12 20:00
自动驾驶行业融资动态 - 某智驾公司因估值过高且量产项目稀少导致融资困难,估值接近头部企业但缺乏实际项目支撑 [3] - 该公司与头部车企达成特殊融资协议:车企投资智驾公司后,资金需全额返投至车企旗下经营困难的零部件子公司 [4] - 该操作实质为资金循环流转,旨在为车企子公司创造外部融资的公关宣传点,类似操作在该车企已有先例 [4] 行业竞争格局分化 - 头部智驾公司凭借算法优势与量产能力持续获得项目,年融资轮次可达1-2轮,形成良性发展循环 [5] - 技术实力薄弱的企业面临项目获取与融资双重困境,仅能获得有限市场份额 [5] - 2023年智驾市场竞争加剧,企业生存状态呈现"冰火两重天"两极分化 [5] 行业发展核心要素 - 实际量产交付能力被视为企业长期发展的关键,超越技术概念炒作的重要性 [5] - 算法性能提升与工程化落地能力是获得市场认可的基础要素 [5] - 部分企业为维系客户关系选择配合资本运作,但可能偏离技术深耕主线 [4][5] 技术发展趋势 - 行业聚焦端到端自动驾驶、世界模型等前沿技术方向 [7][9] - 感知技术领域形成BEV感知、Occupancy等30+技术路线矩阵 [7] - 大模型技术正渗透至感知、决策等多个技术环节 [7][9]
端到端VLA这薪资,让我心动了。。。
自动驾驶之心· 2025-07-10 20:40
端到端自动驾驶技术发展 - 端到端自动驾驶分为一段式端到端和二段式端到端两大技术方向 自UniAD获得CVPR Best Paper后 国内智驾军备竞赛加速 理想汽车2024年宣布E2E+VLM双系统架构量产 [2] - 端到端技术通过传感器数据直接输出规划或控制信息 避免了模块化方法的误差累积 BEV感知和UniAD统一了感知与规划任务 推动技术跃迁 [2] - 当前技术栈涉及多模态大模型 BEV感知 强化学习 视觉Transformer 扩散模型等 学习路径复杂且知识碎片化 [3] 技术课程核心内容 - 课程直击学习痛点 采用Just-in-Time Learning理念 通过案例快速掌握核心技术栈 [4] - 构建端到端自动驾驶研究框架 帮助学员分类论文 提取创新点 形成研究体系 [5] - 理论结合实践 涵盖PLUTO(二段式) UniAD(一段式感知) OccWorld(世界模型) DiffusionDrive(扩散模型) VLA(大模型)等主流技术 [6] 课程大纲与关键技术 - 第一章概述端到端发展历史 模块化到端到端的演变 一段式 二段式 VLA范式优缺点及工业界应用 [8] - 第二章重点讲解背景知识 包括VLA涉及的大语言模型 扩散模型 强化学习 以及BEV感知 为未来两年高频面试技术 [8][9] - 第三章聚焦二段式端到端 分析PLUTO CarPlanner Plan-R1等工作的优缺点 [9] - 第四章深入一段式端到端与VLA 涵盖UniAD PARA-Drive(感知) Drive-OccWorld OccLLaMA(世界模型) DiffusionDrive DiffE2E(扩散模型) ORION OpenDriveVLA ReCogDrive(VLA)等前沿工作 [10] - 第五章大作业为RLHF微调实战 涉及预训练和强化学习模块搭建 可迁移至VLA算法 [12] 行业趋势与人才需求 - VLM/VLA成为招聘刚需 3-5年经验可冲击百万年薪 技术上限高且工业界需求旺盛 [2][10] - 扩散模型与VLA结合成为热点 多模轨迹预测适应自动驾驶不确定性环境 多家公司尝试落地 [10] - 主机厂加速布局端到端算法预研和量产 如小米ORION等开源项目推动技术发展 [10][13]
筹备了半年!端到端与VLA自动驾驶小班课来啦(一段式/两段式/扩散模型/VLA等)
自动驾驶之心· 2025-07-09 20:02
端到端自动驾驶技术发展 - 端到端自动驾驶分为一段式端到端和二段式端到端两大技术方向,通过传感器数据直接输出规划或控制信息,避免模块化方法的误差累积 [1] - BEV感知打通模块化壁垒,UniAD统一感知和规划任务,标志着端到端时代的来临 [1] - 2024年理想汽车宣布E2E+VLM双系统架构量产,显示工业界对端到端技术的重视 [1] - 技术方向多样化:PLUTO(二段式)、UniAD(感知一段式)、OccWorld(世界模型一段式)、DiffusionDrive(扩散模型一段式)等算法涌现 [4] 技术挑战与学习痛点 - 端到端技术涉及多模态大模型、BEV感知、强化学习、视觉Transformer、扩散模型等多领域知识,学习路径复杂 [3] - 论文数量繁多且知识碎片化,缺乏高质量文档和系统实战指导,入门难度高 [3] - 目标驱动导航需闭环任务支持,但理论与实践衔接困难 [3] 课程核心内容与特点 - 课程覆盖端到端算法发展历史、技术范式(一段式、二段式、VLA)及工业界应用 [8][10] - 重点讲解背景知识:Transformer、BEV感知、扩散模型、VLM强化学习技术(RLHF、GRPO) [8] - 二段式端到端聚焦PLUTO、CarPlanner、Plan-R1等经典与前沿工作 [9] - 一段式端到端涵盖UniAD、OccWorld、DiffusionDrive、VLA等子领域,配套Diffusion Planner和ORION实战 [10][12][13] - 大作业为RLHF微调实战,可迁移至VLA算法 [14] 课程结构与安排 - 分五章展开:端到端概述、背景知识、二段式、一段式与VLA、RLHF大作业 [8][9][10][14] - 8月15日开课,三个月结课,离线视频+VIP群答疑+三次线上答疑 [20] - 章节解锁时间:第一章(8.01)、第二章(8.15)、第三章(8.30)、第四章(9.15)、第五章(10.30) [20] 目标人群与学习收获 - 需具备GPU(推荐4090+)、自动驾驶基础、Transformer/BEV/强化学习概念、Python/PyTorch能力 [22] - 学完可达1年经验算法工程师水平,掌握端到端框架及BEV、扩散模型、VLA等关键技术 [23] - 可复现主流算法,应用于实习、校招、社招场景 [23]
自动驾驶黄埔军校,一个死磕技术的地方~
自动驾驶之心· 2025-07-06 20:30
自动驾驶技术发展现状 - 自动驾驶技术正处于从辅助驾驶(L2/L3)向高阶无人驾驶(L4/L5)跨越的关键阶段 [2] - 特斯拉的纯视觉方案凭借成本优势和算法革新正在撼动多传感器融合的主流地位 [2] - 激光雷达成本已降至200美元,比亚迪自研体系内价格再降70%,技术红利背后是从业者持续升级的压力 [2] 自动驾驶人才市场变化 - 传统激光雷达感知算法工程师面临技术路线冲击,规划控制领域从PID到强化学习的转型带来技能升级紧迫感 [2] - 学生新手面临选择困难:感知算法赛道内卷加剧,数据闭环工程师需掌握分布式计算与AI模型调优能力,车路协同方向要求跨界知识融合 [2] 自动驾驶技术社区 - 自动驾驶之心知识星球是国内最大的自动驾驶学习社区,聚集近4000名成员和100+行业专家 [7] - 社区覆盖30+技术学习路线,包括端到端自动驾驶、BEV感知、Occupancy、3D目标检测等几乎所有子方向 [7] - 提供学术界与工业界前沿直播、求职内推渠道,每周活跃度位居国内前20 [7] 前沿技术方向 - 视觉大语言模型(VLM)在自动驾驶中的应用包括场景理解、轨迹生成和决策控制 [26][27] - 世界模型技术如GAIA-1、DriveDreamer通过生成式AI模拟驾驶场景演化,提升系统预测能力 [32][33] - 扩散模型在自动驾驶中用于场景合成、数据增强和轨迹预测,相关研究数量快速增长 [35][40] 数据集与评估 - 主流自动驾驶数据集包括nuScenes(12亿帧)、Waymo Open Dataset(12亿帧)和BDD100K(10万视频) [23][24] - VLM预训练数据集规模从1M(SBU Caption)到12B(WebLI),评估指标涵盖mAP(目标检测)、mIoU(语义分割)等 [17][18] 端到端自动驾驶进展 - 端到端方法逐步替代模块化架构,DriveGPT4、DriveMLM等模型实现感知-规划一体化 [29][53] - 技术挑战包括长尾场景处理、系统可解释性以及与传统规控方法的协同 [54][55] - 行业研究报告显示,特斯拉FSD的端到端方案推动量产落地进程加速 [47] 工业界应用案例 - 智能交通领域采用VLM实现语言引导车辆检索和视觉问答,提升交互效率 [25] - 自动驾驶决策控制中,DiLu、LanguageMPC等模型利用大语言模型增强决策可解释性 [28] - 仿真测试依赖扩散模型生成高保真场景,如DriveDreamer-2支持定制化视频生成 [30] 技术社区资源 - 知识星球提供四大板块:技术领域分类、学术直播、求职资料和问题解答 [10][11] - 汇总Awesome资源列表,包括视觉大语言模型、扩散模型和端到端自动驾驶的论文与代码库 [12][35] - 学习路线覆盖BEV感知、Occupancy、CUDA加速等30+方向,配套工程解决方案与优化思路 [66][67]
从25年顶会论文方向看后期研究热点是怎么样的?
自动驾驶之心· 2025-07-06 16:44
计算机视觉与自动驾驶研究热点 - 2024年CVPR和ICCV两大顶会的研究热点集中在四大领域:通用计算机视觉、自动驾驶相关、具身智能、3D视觉 [2] - 通用计算机视觉细分方向包括diffusion模型、图像质量评估、半监督学习、零样本学习、开放世界检测等 [3] - 自动驾驶领域聚焦端到端系统、闭环仿真3DGS、多模态大模型、扩散模型、世界模型、轨迹预测等技术 [3] - 具身智能领域重点研究方向为VLA(视觉语言动作模型)、零样本学习、机器人操作、端到端控制、sim2real迁移、灵巧抓取等 [3] - 3D视觉领域热点包括点云补全、单视图重建、3D高斯泼溅(3DGS)、3D匹配、视频压缩、神经辐射场(NeRF)等 [3] 自动驾驶技术应用方向 - 自动驾驶核心技术涵盖大模型应用、VLA系统、端到端解决方案、3D高斯泼溅(3DGS)、BEV感知、多传感器融合等 [4] - 具体技术分支包括毫米波雷达与视觉融合、激光雷达与视觉融合、多传感器标定、车道线检测、在线地图构建、Occupancy网络等 [4] - 决策规划领域涉及高性能计算、语义分割、轨迹预测、世界建模、3D目标检测等关键技术 [4] 具身智能与机器人技术 - 具身智能核心方向包括视觉语言导航、强化学习、Diffusion Policy、具身交互、机器人位姿估计等 [4] - 机器人控制技术覆盖运动规划、双足/四足机器人控制、遥控操作、触觉感知、SLAM等 [4] - 零样本学习在具身智能中具有重要应用价值 [4] 3D视觉与通用CV技术 - 3D视觉关键技术包含点云处理、3D高斯泼溅(3DGS)、SLAM等 [4] - 通用计算机视觉持续关注diffusion模型、图像质量评估、半监督学习等基础方向 [4] - 零样本学习在通用CV和具身智能领域均具有交叉应用 [3][4] 学术成果与科研支持 - 自动驾驶领域已有2篇论文被CVPR 2025收录 [3] - 科研支持范围覆盖自动驾驶顶会(CCF-A/B/C)、SCI各分区期刊、EI/中文核心等 [4] - 技术支持方向包括毕业论文、申博研究、学术竞赛等应用场景 [4]
本来决定去具身,现在有点犹豫了。。。
自动驾驶之心· 2025-07-05 17:12
具身智能与自动驾驶行业趋势 - 具身智能经历从沉寂到疯狂再到冷静的发展周期,目前尚未达到生产力阶段[2] - 行业技术栈向端到端、大模型、VLA、强化学习、3DGS等前沿方向迁移[3] - Tier 1供应商和主机厂正跟进无图向端到端技术转型,技术迭代滞后前沿1-2代[3] - 机器人初创公司融资活跃,未来几年发展资金充足[3] 人才需求与职业发展 - 算法岗对学历要求较高,双非背景建议转向SLAM、ROS等机器人集成优化类岗位[3] - 深圳、杭州成为机器人公司聚集地,传统机器人技术仍是产品主线[4] - 大公司招聘聚焦端到端技术,LV融合、无图、BEV感知等领域人才已趋饱和[3] 技术资源与社区 - 知识星球提供自动驾驶15个技术方向学习路线及硬件/代码资料[1] - 社区汇聚华为天才少年等专家,形成课程+硬件+问答的教研闭环[5] - 四大技术板块覆盖视觉大语言模型、世界模型、扩散模型和端到端自动驾驶[8] 视觉语言模型(VLM)研究 - 预训练数据集规模从1M(COCO)到12B(WebLI)不等,LAION5B支持100+语言[16] - CVPR 2024重点论文涉及RLHF-V行为对齐、ViTamin可扩展架构设计等方向[12] - 评估体系涵盖图像分类(ImageNet-1k)、目标检测(COCO mAP)、语义分割(ADE20k mIoU)等17项任务[17][20][21] 自动驾驶数据集应用 - 经典数据集包括KITTI(2012)、Cityscapes(2016)、nuScenes(2020)等7类场景数据[22] - 语言增强数据集如Talk2Car(2020)支持单目标引用,NuScenes-QA(2023)专注视觉问答[23] - 智能交通领域出现多粒度检索系统等3种语言引导车辆检索方法[24] 世界模型前沿进展 - 2024年涌现DriveWorld(4D场景理解)、InfinityDrive(突破时间限制)等16项突破[31][33] - HERMES实现3D场景理解与生成的统一,DrivingGPT整合世界建模与规划[31] - 扩散模型在DriveDreamer-2中实现定制化驾驶视频生成[33] 端到端自动驾驶技术 - 2023年里程碑包括VADv2概率规划模型、GenAD新范式等9大进展[49] - 行业报告指出大模型时代下需重新思考开环端到端技术路径[46] - 特斯拉FSD验证端到端模型价值,ThinkTwice框架提升决策可靠性[46] 多模态技术融合 - DriveGPT4通过大语言模型实现可解释端到端驾驶,DRIVEVLM融合视觉语言模型[26] - 多任务学习框架如TransFuser采用Transformer传感器融合[53] - 安全验证依赖KING生成动力学梯度场景、AdvSim生成对抗性测试用例[57]
今年,传统规划控制怎么找工作?
自动驾驶之心· 2025-07-02 21:54
自动驾驶规划控制行业趋势 - 传统规划控制岗位的生存空间正在被端到端和VLA技术蚕食,行业转向规则算法与端到端结合的需求[2][3] - 2025年端到端技术将进一步落地,但传统规控仍为L4等高安全性场景提供兜底,两者融合成为关键[4] - 头部公司重点关注不确定环境下的决策规划(如Contingency Planning)和博弈式交互规划,这些是面试和量产的核心差异点[4][24][26] 岗位技能要求与转型挑战 - 基础算法(横纵解耦框架、搜索/采样/运动学规划)已成为行业准入门槛,但仅掌握基础难以获得优质offer[4] - 从业者需补充端到端技术(一段式/二段式、VLM/VLA)及传统规控创新方案,以应对技术迭代[4][29] - 转行者需在3-4个月内强化C++/Python、运动规划理论及实战项目,并聚焦不确定性处理和交互规划等高阶能力[4][15][39] 行业培训与就业服务 - 小班课程聚焦量产痛点,覆盖经典规控方案与端到端融合,提供可直接写入简历的工程项目[7][13] - 课程设计对标2-3年工程师经验,包含简历修改、模拟面试及内推服务,往期学员入职华为、百度等头部公司[8][9][10] - 课程大纲分六模块:基础算法、决策规划框架、不确定性处理、博弈规划、端到端技术及面试辅导,强化工程与理论结合[20][22][24][26][29][31] 技术课程内容与特色 - 第一章至第五章系统讲解算法工具链,从搜索/优化到数据驱动框架,培养全局视野[20][21][22] - 博弈交互式规划和防御式规划为头部公司量产重点,课程提供代码级实践与场景落地指导[24][26][27] - 端到端章节新增VLM/VLA技术解析,分析其与传统规控的协同落地策略[29] 目标人群与附加价值 - 面向车辆工程、计算机等专业学生及转行者,需具备编程和数学基础,非小白向[37][38] - 附加服务包括简历修改、理论课程赠送及一对一就业咨询,价值超千元[33][36] - 课程采用VIP群直播+录播模式,限50人,强调保姆级教学与工程能力提升[8][12]