Workflow
逆周期配置模型
icon
搜索文档
绝对收益产品及策略周报(20250603-20250606):上周467只固收+基金创新高-20250611
国泰海通证券· 2025-06-11 19:13
根据提供的研报内容,以下是量化模型和因子的详细总结: 量化模型与构建方式 1. **逆周期配置模型** - 模型构建思路:通过代理变量预测未来的宏观环境,选择不同环境下表现最优的资产构建绝对收益组合[20] - 模型具体构建过程: 1. 预测宏观环境(如Inflation) 2. 根据环境选择资产(如股票、债券、商品) 3. 动态调整组合权重 - 模型评价:能够适应不同宏观周期,但依赖环境预测的准确性 2. **宏观动量模型** - 模型构建思路:从经济增长、通胀、利率等多维度构建择时信号[20] - 模型具体构建过程: 1. 计算宏观指标动量(如GDP、CPI等) 2. 生成多空信号 3. 应用于股票、债券等资产 3. **行业ETF轮动模型** - 模型构建思路:基于基本面、情绪面、量价技术面等多因子进行行业轮动[21] - 模型具体构建过程: 1. 匹配ETF跟踪指数与中信一级行业(23个行业基准池) 2. 计算因子得分(如历史基本面、预期基本面等) 3. 生成行业配置建议(等权重25%)[23] 4. **股债混合配置模型** - 模型构建思路:通过股债比例再平衡或风险平价控制组合波动[25] - 模型具体构建过程: - 再平衡策略:固定股债比例(如20/80)按月调整 - 风险平价策略:根据资产波动率动态分配权重 $$ w_i = \frac{1/\sigma_i}{\sum_{j=1}^n 1/\sigma_j} $$ 其中$\sigma_i$为资产i的年化波动率 5. **黄金择时策略** - 模型构建思路:结合宏观、持仓、量价和情绪因子多周期择时[20] 量化因子与构建方式 1. **PB盈利因子** - 构建思路:低估值+高盈利质量选股 - 具体构建: 1. 筛选PB低于行业中位数 2. 叠加ROE、盈利稳定性指标 2. **高股息因子** - 构建思路:选取持续高分红股票 - 具体构建: 1. 计算近3年股息率 2. 剔除分红不稳定的公司 3. **小盘价值因子** - 构建思路:小市值+价值特征组合 - 具体构建: 1. 按市值分为10组取最小30% 2. 叠加PB、PE等价值指标 4. **小盘成长因子** - 构建思路:小市值+高成长特征 - 具体构建: 1. 市值分组同小盘价值 2. 叠加营收增长率、净利润增长率 模型的回测效果 | 模型名称 | 本年收益 | 年化波动率 | 最大回撤 | 夏普比率 | |------------------------------|----------|------------|----------|----------| | 股债20/80再平衡 | -0.52% | 3.03% | 1.78% | -0.40 | | 股债风险平价 | 0.14% | 1.81% | 1.50% | 0.18 | | 股债黄金风险平价 | 0.91% | 2.27% | 1.49% | 0.95 | | 行业ETF轮动增强版20/80 | -0.30% | 3.38% | 1.64% | -0.21 | 因子的回测效果 | 因子组合(20/80配置) | 本年收益 | 年化波动率 | 最大回撤 | 夏普比率 | |-----------------------|----------|------------|----------|----------| | PB盈利 | 2.22% | 5.04% | 3.79% | 0.02 | | 高股息 | 1.26% | 4.51% | 3.47% | -0.13 | | 小盘价值 | 5.71% | 7.65% | 7.74% | 0.34 | | 小盘成长 | 5.16% | 7.76% | 8.07% | 0.29 | 注:所有测试数据截至2025年6月6日[26][35]
绝对收益产品及策略周报:上周159只固收+产品业绩创历史新高-20250319
海通证券· 2025-02-19 14:12
根据提供的研报内容,以下是量化模型和因子的详细总结: 量化模型与构建方式 1. **模型名称:宏观择时模型** - 模型构建思路:通过经济增长、通货膨胀、利率、汇率和风险情绪等多个维度构建宏观动量模型,对股票、债券等大类资产进行择时[25] - 模型具体构建过程: 1. 使用代理变量预测未来的宏观环境(如Inflation等) 2. 根据不同环境选择表现最优的资产构建绝对收益组合 3. 季度配置信号基于逆周期投资框架,月度信号基于宏观动量模型[25] - 模型评价:能够有效捕捉大类资产轮动机会,但依赖宏观变量预测准确性 2. **模型名称:行业ETF轮动模型** - 模型构建思路:从行业基本面、预期基本面、情绪面、量价技术面、宏观经济等维度构建多因子行业轮动策略[26] - 模型具体构建过程: 1. 将ETF跟踪指数与中信一级行业匹配(覆盖23个一级行业) 2. 基于行业轮动因子(历史基本面、预期ROE、情绪指标等)计算行业得分 3. 每月选择得分最高的4个行业等权配置[26][28] 3. **模型名称:股债混合配置模型** - 模型构建思路:通过动态调整股债比例实现风险控制与收益增强[31] - 模型具体构建过程: 1. 基础版本采用固定比例(如20/80股债再平衡) 2. 增强版本结合宏观择时信号动态调整权重 3. 风险平价版本根据资产波动率分配权重[31] 4. **模型名称:量化固收+策略** - 模型构建思路:通过股票端量化选股策略增强固收产品收益[38] - 模型具体构建过程: 1. 股票端采用PB盈利、高股息、小盘价值、小盘成长四种选股策略 2. 与债券端(短债基金指数)按10/90或20/80比例月度再平衡 3. 可选配宏观择时模块动态调整股债比例[38][39] 量化因子与构建方式 1. **因子名称:PB盈利因子** - 因子构建思路:结合市净率和盈利能力的复合价值因子[39] - 因子具体构建过程: $$ PB盈利 = \frac{净利润}{市值} \times \frac{1}{市净率} $$ 通过排序筛选高PB盈利得分股票[39] 2. **因子名称:高股息因子** - 因子构建思路:筛选持续高分红股票获取稳定收益[39] - 因子具体构建过程: 1. 计算近12个月股息率 2. 结合分红稳定性和财务健康度筛选[39] 3. **因子名称:小盘价值因子** - 因子构建思路:在小市值股票中挖掘低估标的[39] - 因子具体构建过程: 1. 按市值分组选取小盘股 2. 在组内应用PB、PE等价值指标排序[39] 4. **因子名称:小盘成长因子** - 因子构建思路:捕捉小市值成长股超额收益[39] - 因子具体构建过程: 1. 按市值分组选取小盘股 2. 在组内应用收入增长率、ROE等成长指标排序[39] 模型的回测效果 1. **宏观择时模型** - 股债20/80再平衡策略:2025年累计收益-0.31%,年化波动率2.71%,最大回撤0.51%[32] - 股债风险平价策略:2025年累计收益0.15%,夏普比率0.87[32] - 股债黄金风险平价策略:2025年累计收益1.27%,夏普比率6.09[32] 2. **行业ETF轮动模型** - 2025年2月组合收益4.55%,相对Wind全A超额-0.75%[26] 3. **量化固收+策略** - 不择时20/80组合:小盘成长策略2025年收益3.38%,小盘价值策略3.09%[39] - 宏观择时20/80组合:小盘成长策略2025年收益1.75%,夏普比率0.01[39] 因子的回测效果 1. **PB盈利因子** - 10/90组合2025年收益0.38%,20/80组合0.69%[39] 2. **高股息因子** - 10/90组合2025年收益0.01%,20/80组合-0.04%[39] 3. **小盘价值因子** - 10/90组合2025年收益1.58%,20/80组合3.09%[39] 4. **小盘成长因子** - 10/90组合2025年收益1.72%,20/80组合3.38%[39]