RAG
搜索文档
长上下文窗口、Agent崛起,RAG已死?
机器之心· 2025-10-19 17:17
RAG技术演进与行业观点 - 行业出现“RAG已死”的论调,Chroma公司CEO Jeff Huber主张以“上下文工程”框架取代对RAG术语的狭义依赖 [1][2] - RAG自2022年以来成为解决LLM输入长度限制(如GPT-3.5的4K tokens)的行业标准解决方案,其核心逻辑类似于搜索引擎 [3][4] - 长上下文窗口的崛起和Agent能力的进化正在动摇RAG的核心地位,引发其是否过时的讨论 [5][6] RAG的进化:智能体检索 - LlamaIndex提出RAG正在演进为“智能体检索”,AI智能体成为更强大的RAG架构核心,超越了早期“朴素的区块检索”阶段 [7][8] - 技术演进分为四个阶段:从基础的Top-k检索,到引入轻量级agent的自动路由模式,再扩展到多个知识库的复合检索API,最终构建完全由agent驱动的双层智能系统 [9][10][11][13][15][17][18][19] - 高级检索服务通过分层、智能的能力,成为高级AI智能体不可或缺的“知识骨干”,简单的RAG已经过时 [21] RAG作为工程学科的深化 - 行业专家认为RAG正进化为构建可靠、高效AI应用的核心工程学科,其本质(为LLM提供外部知识)是永恒需求 [22][23][24] - 需要升级评估范式,传统搜索引擎基准(如BEIR)与RAG目标不符,新基准FreshStack更注重覆盖率、多样性和相关性等真实性能指标 [26][27][28][29][33] - 新一代检索模型具备推理能力(如Promptriever)和采用无损压缩技术(如延迟交互模型ColBERT),小模型(150M参数)在特定任务上可超越大模型(7B参数) [34][35][39] 对RAG架构的批判与替代方案 - 批评者指出RAG架构存在“原罪”:切分导致上下文割裂、向量搜索在专业领域失灵、系统复杂性和延迟问题突出 [37][38][41][48] - 智能体(Agent)和长上下文窗口(如Claude Sonnet 4达200K、Gemini 2.5达1M、Grok 4-fast达2M tokens)被视为更优替代方案,采用“调查”而非“检索”范式 [42][43][44][45][49] - 在新范式下,RAG被“降级”为Agent工具箱中的一个组件,与代码解释器、API调用等工具并列,场景需求决定架构选择 [47][50][51][52][54] 行业共识与未来展望 - 行业共识是初级的、朴素的RAG(Naive RAG)已无法满足复杂需求,但其核心思想——为LLM提供外部知识——是永恒的 [50][51] - 未来技术图景是多元化融合:Agent驱动的工程化RAG适用于海量数据初筛,而“长上下文窗口 + Agent调查”范式在深度分析场景具优势 [52][54] - 开发者需理解不同技术范式优劣,根据具体应用场景灵活组合,构建最高效可靠的解决方案 [52]
最新自进化综述!从静态模型到终身进化...
自动驾驶之心· 2025-10-17 08:03
文章核心观点 - 当前主流AI智能体存在静态配置的局限性,无法动态适应环境变化,而自进化AI智能体通过与环境交互持续优化内部组件,实现终身学习 [1][5][6] - 论文首次明确定义自进化AI智能体,提出三大定律和四阶段演进框架,构建从技术到落地的完整图谱 [1][7][9] - 自进化AI智能体的目标是让AI系统成为能与人类长期协作的伙伴,实现从静态模型到终身进化的范式转变 [42] 自进化AI智能体的定义与核心原则 - 自进化AI智能体是通过与环境交互,持续且系统性地优化内部组件,以适应任务、上下文和资源变化的自主系统 [6] - 提出自进化AI智能体三定律:存续定律(维持安全与稳定性)、卓越定律(保持或提升性能)、进化定律(自主优化内部组件) [8][12] - 四阶段演进历程包括模型离线预训练(MOP)、模型在线适配(MOA)、多智能体协同(MAO)和多智能体自进化(MASE) [9] 技术框架与组件 - 四组件反馈循环框架包括系统输入(定义进化目标)、智能体系统(执行任务)、环境(提供反馈信号)、优化器(迭代优化智能体) [10][11][15] - 系统输入分为任务级输入(针对特定任务的整体优化)和实例级输入(针对单个任务实例的精细优化) [13][16] - 智能体系统分为单智能体(由基础模型、提示、记忆、工具等构成)和多智能体(由多个单智能体、通信协议和拓扑结构组成) [14][17] - 环境反馈分为客观反馈(可量化的性能指标)和主观反馈(需通过LLM评估的质性指标) [14][18] - 优化器由搜索空间(定义可优化对象)和优化算法(定义如何搜索最优配置)组成 [19][22] 单智能体优化技术 - LLM行为优化分为训练式优化(通过数据反馈更新模型参数)和推理时优化(不修改模型参数,通过推理策略提升性能) [20][23] - 提示优化技术包括编辑式优化、生成式优化、文本梯度式优化和进化式优化 [26] - 记忆优化分为短期记忆优化(优化当前任务的上下文管理)和长期记忆优化(构建跨任务的持久化记忆) [26] - 工具优化分为训练式工具优化、推理时工具优化和工具功能优化(自主创建新工具) [26] 多智能体优化技术 - 手动设计多智能体系统包括并行工作流、分层工作流和多智能体辩论 [30][31] - 自进化多智能体系统优化技术包括拓扑优化、统一优化和LLM骨干优化 [30][31] - 多智能体系统通过协作提升复杂任务处理能力,例如医疗诊断多智能体系统模拟临床流程 [30][32] 领域特定优化应用 - 生物医学领域注重安全优先和精准适配,例如多智能体模拟临床流程和分子发现 [30][32] - 编程领域注重效率导向和错误修正,例如自反馈与多角色协作优化代码生成和调试 [30][38] - 金融与法律领域注重合规优先和规则对齐,例如多源信息整合优化金融决策和模拟司法流程优化法律推理 [30][33][38] 评估方法与安全伦理 - 评估方法分为基准测试评估(基于标准化数据集和任务)和LLM驱动评估(用LLM作为评估者) [35][39] - 安全与伦理风险包括安全风险(进化过程中出现有害行为)、稳定性风险(进化导致性能波动)和合规风险(进化后违反领域法规) [36][40] - 需要建立进化安全审计机制,确保每个进化步骤符合安全与伦理要求 [36] 挑战与未来方向 - 核心挑战包括安全与进化的平衡、评估体系的完善、多模态与跨领域泛化、效率与性能的权衡 [37][41] - 未来方向包括开发MASE模拟环境、推进工具自主创建、构建终身评估基准、优化多智能体效率 [37][41] - 自进化AI为构建更自适应、更自主、更可持续的AI系统提供了清晰的路径 [42]
国庆长假充电指南:Ilya Sutskever's Top 30 论文阅读清单
锦秋集· 2025-10-01 21:25
文章核心观点 - 文章推荐了一份由Ilya Sutskever精选的30篇AI领域前沿论文合集,该合集覆盖了近15年AI发展的里程碑成果,以"技术底层-能力突破-场景落地"为主线,串联了AI从感知智能到认知智能的关键跃迁 [4] - 该论文合集旨在帮助投资者、从业者与研究者系统梳理AI技术演进脉络,深刻理解当前AI产业落地的机遇与挑战,实现专业能力的高效提升 [1][5] - 合集内容不仅清晰拆解了残差映射、动态指针网络等专业术语的技术逻辑,还通过论文中的实验数据和架构设计,为从业者提供从理论到落地的参考路径 [5] 论文合集技术框架 - 合集涵盖奠定深度学习基础的CNN、RNN,重构自然语言处理领域的Transformer与自注意力机制,以及推动RAG、多步推理等前沿方向的核心研究 [4] - 每篇论文都是对应技术领域的奠基之作,直接关联当前AI产业落地的核心能力底座,包括《GPipe》中的并行训练方案如何降低大模型算力成本,《Retrieval-Augmented Generation》如何解决AI幻觉问题以适配金融、医疗等高精度场景 [4][5] 代表性论文技术要点 深度学习基础架构 - ImageNet Classification with Deep Convolutional Neural Networks论文提出的CNN架构包含5个卷积层和3个全连接层,在ILSVRC-2010数据集上top-5错误率为17.0%,显著优于此前方法 [48][52] - Deep Residual Learning for Image Recognition提出的残差网络通过残差块简化了深层网络训练,152层ResNets在ImageNet等数据集上性能优于VGG nets [73][77] - Recurrent Neural Network Regularization提出将dropout技术应用于LSTM的新方法,在Penn Tree Bank数据集上词级困惑度显著降低 [21][24] 注意力机制与Transformer - Attention is All You Need完全依赖自注意力机制提出Transformer架构,在WMT 2014 English-to-German翻译任务中BLEU分数达到28.4,比当时最先进模型高出2个多BLEU点 [105][117] - Neural Machine Translation by Jointly Learning to Align and Translate引入注意力机制解决固定长度向量瓶颈问题,在WMT '14 English-to-French翻译任务上BLEU分数显著提升 [119][126] 模型扩展与优化技术 - GPipe通过微批量流水线并行技术实现大型神经网络高效训练,支持训练包含60亿参数、128层的Transformer模型,在ImageNet-2012数据集上top-1准确率达到84.4% [62][72] - Scaling Laws for Neural Language Models发现模型性能与参数规模遵循幂律关系,更大规模模型具有更高样本效率,在固定计算预算下训练极大型模型是最优策略 [212][218] 特定应用领域突破 - Neural Message Passing for Quantum Chemistry提出的MPNNs框架在QM9数据集上13种性质中有11种达到化学精度,为分子性质预测提供强大工具 [94][101] - Deep Speech 2端到端语音识别模型在英语和普通话上均实现高准确率,在WSJ、LibriSpeech等基准测试中性能超过人类转录员 [203][209] - Pointer Networks提出新型神经架构解决输出词典大小可变问题,在计算平面凸包、德劳内三角剖分等几何问题上性能显著优于传统序列到序列模型 [37][45] 技术演进趋势 - 从传统神经网络到残差网络、注意力机制的演进表明,通过架构创新可有效解决梯度消失、长期依赖关系等核心挑战 [73][105] - 模型规模与性能关系研究为大规模神经网络训练提供理论指导,计算效率最优策略推动行业向极大型模型方向发展 [212][224] - 多令牌预测等新型训练方法重新定义LLMs处理文本方式,通过并行预测多个未来令牌提升模型效率和速度 [259][264]
OpenAI o3-pro发布,也许当前的RAG过时了
虎嗅· 2025-06-16 14:33
OpenAI o3-pro 发布与定价调整 - OpenAI 发布 o3-pro 模型,号称推理能力最强 [1] - 同时宣布 o3 价格下调 80%,降至与 GPT-4o 相当水平 [1] - 输入 token 从每百万 10 美元降至约 2 美元 [1] - 输出 token 从每百万 40 美元降至约 8 美元 [1] - 10000 字提示词成本从 0.72 元降至 0.144 元 [2] o3-pro 技术规格与影响 - 上下文窗口大小达 200k,最大输出 token 数 100k [3] - 可输入约 15 万字提示词,相当于一篇短篇小说长度 [3] - 更便宜资费和更强上下文利好 Agent 架构记忆问题 [3] - 为 RAG 技术提供更长提示词上下文支持 [3] RAG 技术演进 基础 RAG - 工程层面包含三个关键步骤:向量检索→上下文拼接→一次性生成 [8] - 优势在于快、易落地 [7] - 短板包括检索策略死板、推理链条单薄 [7] - 典型问题包括检索覆盖不足、回答缺少链条、可观测性差 [9] 高级 RAG - 在基础 RAG 上增加工程控制策略 [10] - 采用多通道找资料+智能排序+过程可追踪的方案 [12] - 可同时跑向量、关键词、结构化数据等多路召回 [13] - 系统自动记录召回率、覆盖率等指标 [14] - 在医疗问答场景使召回率从 62%提升至 93% [12] - 在券商数据分析场景使报告生成时间从 80 秒缩短至 18 秒 [12] GraphRAG - 将所有书的知识点串成关系网,实现网状路径跳跃推理 [17] - 把"检索增强"升级到"关系增强" [18] - 检索颗粒度从文本块升级到实体+关系+路径 [18] - 典型能力提升包括多跳推理、事实连贯性、减少幻觉 [18] 推理型 RAG - 融合思维链推理与检索动态调度 [22] - 面向复杂思考+自主决策场景 [22] - 包含思维链增强、自反思机制、多步骤分解推理等能力 [24] - 在医疗诊断案例中实现可追踪的自纠错闭环 [30] 行业发展趋势 - 模型基础能力持续增强 [33] - 上下文窗口从 4k-8k 发展到 128k、200k 甚至更大 [34][37] - 新一代 RAG 可能演进方向: - 窗口够大时整篇输入,不够再按结构化单元分 [40] - 检索层统一处理多模态数据 [40] - 检索-推理-验证全程留痕 [40] - 未来重点将转向丰富多模态数据的无缝衔接,而非切割细节优化 [41]
深度|吴恩达:语音是一种更自然、更轻量的输入方式,尤其适合Agentic应用;未来最关键的技能,是能准确告诉计算机你想要什么
Z Potentials· 2025-06-16 11:11
Agentic系统构建 - 从讨论"是否是Agent"转向"Agentic性光谱"的思维转变 更有效减少定义争论[4][5] - 实际应用中更多机会集中在简单线性流程自动化 而非高度自治的复杂系统[6][7] - 企业面临的主要挑战是如何将现有工作流拆解为可自动化的"微任务"并建立评估体系[7] AI开发关键技能 - 掌握LangGraph/RAG/memory/evals等工具的组合应用能力 如同搭建乐高积木[9][11] - 建立系统性评估体系至关重要 可避免在错误路径上浪费数月时间[10] - AI辅助编程显著提升开发效率 但部分企业仍禁止使用[15] - 语音技术栈(voice stack)被严重低估 在降低用户交互门槛方面潜力巨大[15][18] 技术演进趋势 - MCP协议通过统一API标准显著简化数据对接流程 使集成成本从N×M降至N+M[21][22] - Agent间协作仍处早期阶段 跨团队Agent协同目前几乎没有成功案例[23] - 语音交互面临延迟挑战 需采用预响应机制等技巧优化用户体验[19] 初创企业建议 - 执行速度是初创企业成功的第一关键指标[26] - 技术知识深度比商业知识更为稀缺和关键[26] - 编程能力将成为基础技能 能明确表达需求比编码本身更重要[24]
Agent Infra 图谱:哪些组件值得为 Agent 重做一遍?
海外独角兽· 2025-05-21 20:05
核心观点 - Agent Infra需求爆发,开发范式正在重构和收敛,四大赛道值得关注:Environment、Context、Tools、Agent Security [3][13] - 创业公司机会在于:1) 在已有Infra中寻找真正Agent-native需求 2) 抓住Agent开发中新痛点 [4][5][16][17] - 云厂商积极布局但尚未出现Agent-native产品,初创公司在细分领域有差异化机会 [63][70] 投资主题1:Environment - Sandbox需满足更高性能要求:隔离性、启动速度、稳定性及AI性能如代码解释器功能 [20] - E2B提供AI-native microVM获Perplexity等头部客户认可 [20][21] - Modal提供Cloud-native虚拟机适合规模化需求 [20][21] - Browser Infra分两类:1) 大规模浏览网页 2) 深度操纵网页 [22] - Browserbase平衡带宽价格速度获开发者青睐 [23][25] - Browser Use新兴公司让Agent像人一样深度操作网页 [24][25] 投资主题2:Context - RAG已成共识技术,Glean估值近70亿美元专注企业内数据搜索 [29][30] - MCP协议标准化工具调用,早期机会在: - 自动生成MCP Server如Mintlify [31][33] - MCP connector如Composio托管100+ Server [31][33] - Marketplace价值较薄可能集成至开发端 [32] - Memory分短期/长期/程序记忆,Letta通过Sleep-time预处理提升推理质量 [34][36][38][40] 投资主题3:Tools - Search & Scraping: - Agent搜索量将远超人类,需AI-native方案 [45] - 机会在廉价API(博查)、智能搜索(Exa)、爬虫架构(Firecrawl) [45][46][47] - Finance & Payment: - Skyfire让Agent具备支付能力类比"AI经济Visa" [49][51][53] - Paid按产出定价重构货币化机制 [52][53] - Backend Workflow: - Supabase一站式后端服务吸引200万开发者 [54][56] - Inngest简化工作流编排获a16z投资 [56] 投资主题4:Agent Security - 需动态意图分析及数据校验,当前以老牌玩家为主 [57][59] - Chainguard提供安全容器镜像 [59][61] - Haize Labs压力测试增强稳健性 [59][61] - 生态完善后AI-native机会更清晰,当前偏早 [60] 云厂商布局 - Environment: - AWS Nitro Enclaves/Azure Container Apps/GCP Cloud Functions均非Agent-native [63][64][65] - Context: - AWS Bedrock/Azure Cognitive Search/GCP Vertex AI推动企业上云 [66][67] - 三大云厂商均推出MCP相关产品与A2A协议互补 [68][69] - Tools: - AWS Step Functions/Azure Logic Apps/GCP Workflows未体现Agent特性 [70][71]
【广发金工】从知识库到知识图谱:DeepSeek&GraphRAG
广发金融工程研究· 2025-02-26 13:04
文章核心观点 国内大模型公司“深度求索”开发的DeepSeek-V3和DeepSeek-R1以极低训练成本实现与顶尖模型媲美的性能 ,报告介绍其部署和运行测试方法 ,并探讨GraphRAG与大模型在金融投研领域的应用 [1][5] DeepSeek部署与运行测试 各版本DeepSeek模型与部署所需硬件对应关系 - 大模型训练和推理用英伟达显卡搭配CUDA平台 ,部署模型所需显存用于保存模型权重等 ,显存M(GB)与模型参数量P、参数精度Q等有关 ,如P=7B、Q为16位浮点精度时 ,M=16.8GB [6] - 不同参数版本模型所需显存和对应显卡不同 ,如1.5B参数模型需3.6G显存 ,对应NVIDIA 4060 [7] 部署流程介绍 - DeepSeek模型开源 ,可公开下载 ,主流本地化部署方式有从HuggingFace下载调用和用Ollama、LM Studio平台部署 ,以Ollama为例 ,需访问官网下载终端 ,搜索模型版本 ,在cmd输入命令运行 [8] - Ollama本地模型默认端口为11434 ,其他应用调用时修改访问请求base_url [9] 简单问答测试 - 测试本地部署14B模型推理能力及与满血版差距 ,14B版本在部分逻辑题展现较强推理能力 ,但在复杂逻辑推理任务中与满血版有差距 [10][12] GraphRAG与大模型应用介绍 Langchain与RAG介绍 - 开源框架Langchain集成RAG和Agent功能提升大模型在专业垂直领域回答水平 [13] - RAG即检索增强生成 ,使大模型生成回答时读取外部信息 ,减少模型幻觉 ,生成更精准答案 ,包括检索、增强、生成三步 [14] - Agent是智能体系统 ,可自主感知环境、决策和执行行动 ,适用于自动化任务等应用 [15] GraphRAG - RAG效果未达预期 ,存在数据处理和相关性搜索问题 ,难以从全局考虑问题和进行总结归纳 [16][19] - GraphRAG由微软开源 ,通过构建知识图谱和社区摘要扩展RAG能力 ,特点有增强知识表示、可解释和可验证、复杂推理、知识来源灵活等 ,还能降低Token成本 ,支持增量索引和动态更新 [20][23] - GraphRAG流程包括文本单元切分、实体和关系提取、实体消解、图构建、社区总结 ,检索方案有全局搜索、局部搜索、DRIFT搜索 [24][27][29] - 蚂蚁基于GraphRAG构建DB - GPT ,是开源AI原生数据应用开发框架 ,让围绕数据库构建大模型应用更简单 [29][30] - GraphRAG应用场景拓宽到金融、医疗、法律等领域 ,如学术研究、法律情境、电子商务等 [31] 金融知识图谱GraphRAG&DeepSeek实践 金融知识图谱介绍 - 金融知识图谱以图结构表示金融领域知识 ,用于风险控制、投资决策、市场监管等 ,如FP2KG数据集有17,799实体等 [34][35] - 知识图谱可梳理投研领域实体和关系 ,减轻投研负担 ,辅助投资决策 [36] GraphRAG部署流程 - 用微软开源GraphRAG版本 ,结合DeepSeek大模型和研报数据构建知识图谱 ,步骤包括安装库、新建文件夹、下载数据、项目初始化、构建图谱、提问搜索等 [37][40][41] - 需调整提示词语言确保结果实用性 ,若换模型需调整settings.yaml参数 [41] 基于研报的知识图谱搭建 - 以传媒行业游戏板块和计算机行业个股研报等为输入 ,GraphRAG回答问题准确性和完整性高 ,能准确识别实体关联 [43][44][51] - 输出的社区报告表、实体关系表和实体表等结构化数据可用于后续筛选、处理 ,还可将图谱可视化 [45][49][50]