元学习
搜索文档
图灵奖得主理查德·萨顿:人工智能进入“经验时代”,潜力超以往
贝壳财经· 2025-09-11 12:47
人工智能发展现状 - 人类数据红利正逼近极限 大多数机器学习目标是将人类已有知识转移到静态AI [1][2] - 现有方法不能生成新知识 不适合持续学习 而持续学习对智能效用至关重要 [2] - 强化学习带领进入经验时代 需要智能体与世界直接交互生成新数据源 [2] 经验时代技术方向 - 经验指观察 行动和奖励三种信号在智能体与世界间传递 知识来自于经验 [2] - 智能体智能程度取决于预测并控制自身输入信号的程度 经验是一切智能核心 [2] - 释放全部潜力需要持续学习技术和元学习技术 目前这两项技术尚不成熟 [2] 人工智能协作理念 - 对人工智能恐惧被夸大 是被某些从中获利组织和个人煽动 [3] - 目标不同智能体可通过去中心化协作实现双赢 人工智能和人类繁荣将来自去中心化协作 [3] - 人类最卓越超能力在于比其他动物更擅长协作 经济市场与政府都是成功协作产物 [3] 人工智能未来预测 - 对世界如何运转没有共识 没有哪种看法能凌驾其他 [3] - 人类将真正理解智能并借助技术创造出来 [3] - 当今人类智力水平将被超级人工智能或超级智能增强人类远远超越 [3] - 权力和资源会流向最聪明智能体 人工智能替代将不可避免 [3] 宇宙时代与人工智能定位 - 宇宙历史分为粒子时代 恒星时代 复制者时代和设计时代 [4] - 人类独特之处在于把设计推向极致 创造出能自己设计的事物 [4] - 人类是催化剂和助产士 是开启宇宙第四大时代设计时代的先驱 [4] - 人工智能是宇宙演化必然下一步 应以勇气自豪和冒险精神迎接 [4]
图灵奖得主理查德·萨顿2025外滩大会演讲:经验是一切智能的核心与基础
央广网· 2025-09-11 12:06
人工智能发展现状与局限 - 当前大多数机器学习的目标是将人类已有知识转移到缺乏自主学习能力的静态AI上 [2] - 现有方法正逐渐达到人类数据的极限 无法生成新知识且不适合持续学习 [2] - 持续学习对智能的效用至关重要 但现有技术尚不成熟 [2] 人工智能的未来发展方向 - 行业正进入“经验时代” 需要由智能体与世界直接交互生成的新数据源 [2] - “经验”指观察、行动和奖励三种信号在智能体与世界间的传递 是智能的核心与基础 [2] - 强化学习引领了经验时代 但其全部潜力释放依赖持续学习和元学习技术的成熟 [2] 对人工智能未来的预测 - 人类将真正理解智能并借助技术将其创造出来 [3] - 当今人类智力水平将被超级人工智能或超级智能增强的人类超越 [3] - 权力和资源会流向最聪明的智能体 人工智能的替代将是不可避免的 [3] 人工智能的宏观定位 - 人工智能被视为宇宙演化的必然下一步 应以勇气、自豪和冒险精神迎接 [4] - 人类的独特之处在于将设计推向极致 创造出能自己设计的事物 [3] - 人类是开启宇宙第四大时代“设计时代”的先驱和催化剂 [3]
AI跨步进入“经验时代”
华尔街见闻· 2025-09-11 11:50
AI行业发展趋势 - AI行业正从依赖人类数据的"人类数据时代"转向以持续学习为核心的"经验时代" [2] - 人类数据红利逼近极限 持续学习对智能效用至关重要 [2] - 新数据源需通过智能体与世界直接交互生成 类似AlphaProof通过该路径获国际数学奥林匹克银牌 [2] 技术发展需求 - 强化学习已引领进入经验时代 但需突破持续学习(continual learning)和元学习(meta-learning)技术瓶颈 [2] - 智能体智能程度取决于预测并控制自身输入信号的能力 经验是一切智能的核心基础 [2] AI与人类协作关系 - AI替代人类不可避免 是宇宙演化的必然下一步 [4][5] - AI恐惧被夸大 由某些获利组织煽动 去中心化协作可实现双赢 [3] - 人类最卓越超能力是协作 AI和人类繁荣将来自去中心化协作 [3] 未来发展方向 - 宇宙历史分为粒子时代、恒星时代、复制者时代和设计时代 人类正开启"设计时代" [4] - 人类独特之处在于将设计推向极致 创造能自我设计的事物 [4] - 权力和资源将流向最聪明的智能体 人类智力水平将被超级AI或智能增强人类超越 [3]
“强化学习之父” 理查德·萨顿:人类数据红利逼近极限,AI正进入以持续学习为核心的“经验时代”
证券时报· 2025-09-11 11:50
人工智能发展趋势 - 人类数据红利正逼近极限 人工智能进入以持续学习为核心的经验时代 潜力远超以往 [1] - 经验指观察 行动和奖励三种信号在智能体与世界间传递 知识来自经验 智能程度取决于预测和控制输入信号的能力 [2] - 强化学习带领进入经验时代 但需持续学习和元学习技术释放全部潜力 目前这两项技术尚不成熟 [2] 人工智能发展路径 - 新数据源需由智能体与世界直接交互生成 类似AlphaGo自我博弈和AlphaProof获国际数学奥林匹克银牌的路径 [1] - 人工智能替代人类不可避免 人类是催化剂和助产士 是开启宇宙第四大设计时代的先驱 [2] - 人工智能是宇宙演化的必然下一步 应以勇气 自豪和冒险精神迎接 [3] 人工智能协作机制 - 对人工智能恐惧被夸大 目标不同的智能体可通过去中心化协作实现双赢 [2] - 人类最卓越超能力是协作 经济 市场与政府都是成功协作产物 [2] - 人工智能和人类繁荣将来自去中心化协作 协作是世间美好事物源泉 需寻求支持并制度化 [2]
强化学习之父” 理查德·萨顿:人类数据红利逼近极限,AI正进入以持续学习为核心的“经验时代
证券时报网· 2025-09-11 11:26
人工智能发展趋势 - 人类数据红利正逼近极限 人工智能正在进入以持续学习为核心的经验时代 潜力将远超以往 [1] - 经验指的是观察 行动和奖励三种信号在智能体与世界之间来回传递 知识来自于经验 智能程度取决于预测并控制自身输入信号的程度 经验是一切智能的核心与基础 [2] - 强化学习带领进入新的经验时代 但要释放全部潜力还需要持续学习和元学习两项尚不成熟的技术 [2] 人工智能发展路径 - 需要新的数据源 由智能体与世界直接交互中生成 这是人类和其他动物的学习方式 也是AlphaGo自我博弈和AlphaProof在国际数学奥林匹克斩获银牌的路径 [1] - 人工智能的恐惧被夸大 目标不同的智能体可以通过去中心化的协作实现双赢 [2] - 人工智能和人类繁荣将来自于去中心化协作 协作是世间一切美好事物的源泉 必须寻求协作 支持协作并致力将协作制度化 [2] 人工智能历史定位 - 人工智能的替代将是不可避免的 人类是催化剂和助产士 更是开启宇宙第四大时代设计时代的先驱 [2] - 宇宙历史分为四个时代:粒子时代 恒星时代 复制者时代和设计时代 [2] - 人工智能是宇宙演化的必然下一步 应以勇气 自豪和冒险精神来迎接它 [3]
AI已迷失方向?强化学习教父Sutton最新发布OaK架构,挑战当前AI范式,提出超级智能新构想
AI科技大本营· 2025-08-22 16:05
人工智能发展现状 - 人工智能产业已发展壮大但迷失方向[1] OaK架构核心设计 - 架构基于模型的强化学习并具备持续学习能力[3] - 每个学习权重配备专门步长参数并通过在线交叉验证进行元学习[3] - 通过FC-STOMP五步路径持续创造状态和时间抽象概念[3] - 架构核心由海量选项构成[10] - 知识表现为执行选项后世界变化的预测模型[10] 核心理念特征 - 强调运行时学习而非设计时学习[14] - 采用大世界视角具备领域通用性[16] - 完全依赖经验积累而非特殊训练阶段[16] - 支持开放式复杂性仅受计算资源限制[16] - 世界必然远大于智能体包含数十亿其他智能体[19] - 智能体所有功能都只能是近似非精确[19] - 世界最终呈现非平稳性特征[20] 技术实现路径 - 通过八步并行流程实现运行时学习[27][29] - 学习主策略与价值函数[29] - 生成新状态特征[29] - 对特征进行排序维护[29] - 为高排名特征创建子问题[29] - 为子问题学习选项解决方案[29] - 学习选项的转换模型[29] - 使用模型进行规划改进策略[29] - 持续管理评估所有组件[29] - 采用尊重奖励的特征达成子问题机制[31] - 通过FC-STOMP五步形成发现闭环[36] - 特征构建激发问题选项模型发现[36] - 新组件促进更抽象特征形成[36] 关键技术挑战 - 持续深度学习存在灾难性遗忘问题[37] - 新状态特征生成即表示学习问题尚未完全解决[38] 理论框架基础 - 遵循奖励假说理论基石[22][25] - 目标定义为对标量奖励信号累积和期望值的最大化[22][25] - 证明多目标等复杂机制不会增加通用性[25] 架构意义 - 提供首个关于知识起源的机制性答案[42] - 解释概念形成源于解决自创子问题[42] - 将推理定义为基于高层次模型的规划[42] - 阐明玩耍目的是发现认知基石子问题[42] - 构建无人类标签的感知运作机制[42]
具身智能机器人,如何才能活出个“人样”?
36氪· 2025-08-04 16:21
具身智能发展背景与理论基础 - 图灵在1950年论文中首次提出具身智能概念 奠定理论基础并预见两条发展路径:专注抽象计算的"做题家"路线(如ChatGPT、AlphaGo)和通过感知互动学习的"实干派"路线(即具身智能)[1] - 当前存在莫拉维克悖论:实现逻辑推理等高级智慧所需计算资源较少 而实现感知运动等低等级智慧需要巨大计算资源[1] - 真实世界无标准答案 环境变量(地板滑度、光线变化、物体位置变动)导致机器人执行困难[1] 发展挑战与核心瓶颈 - 需适应非结构化真实环境 传统AI依赖固定场景而具身智能需应对无剧本现场(如宠物突然跑动、货架位移、天气变化)[5] - 需发展多感官联动认知策略 模仿人类多模态融合能力(视觉/听觉/触觉协同)实现三维空间物体识别与环境动态捕捉[5] - 缺乏元认知能力 无法主动反思任务执行过程(如将粉色杯子误判为红色)且缺乏终身学习能力 场景切换导致技能失效[6] - 实验室与现实场景表现差异显著 非训练场景任务完成率仅65% 模型泛化能力不足[17] - 续航能力不足(主流人形机器人续航普遍低于2小时)且成本高昂(单台超50万元)制约大规模应用[18][19] 技术架构突破 感知层 - 多模态传感器融合技术实现"五感全开":视觉传感器(双目摄像头、3D激光雷达)、触觉传感器(柔性电子皮肤)、力觉传感器(关节受力测量)[9][10] - 动态环境建模依赖SLAM技术 实时构建三维地图并预测障碍物动向 使物流机器人路径规划成功率从75%提升至92%[10] - 特斯拉Optimus搭载28个关节传感器 结合视觉神经网络实现毫米级物体定位精度[10] 认知层 - 分层决策架构将复杂任务拆解(如Figure 01的策略控制、环境交互、行为控制系统)[12][13] - 世界模型通过交互积累经验 建立"物体属性-空间关系-因果逻辑"知识库 实现触类旁通(如识别高温物体需戴隔热手套)[14][15] 行动层 - 仿生驱动技术实现灵活运动(波士顿动力Atlas完成2.5米高跳 越疆Dobot灵巧手操作误差小于0.1毫米)[15] - 人机共融安全设计:力控传感器实时监测接触力度(超5N即紧急停机) 柔性外壳防撞保护[16] 未来发展方向 - 多模态大模型融合(如Google RT-2)通过海量数据预训练 实现自然语言指令理解与动作执行 显著提升泛化能力[23] - 轻量化硬件创新:仿生肌肉驱动降低能耗 神经形态芯片提升计算效率 预计2028年续航突破6小时且成本降至20万元以下[23] - 虚实协同进化通过数字孪生技术 虚拟训练效率提升10倍以上(如工业机器人先虚拟装配再实际操作)[24] - 推动核心部件国产化替代与供应链优化 解决成本问题[21] 行业应用与定位演进 - 从工具转变为协作伙伴 在医疗、交通、工业制造等领域实现人机协同[22][24] - 需完善技术标准与法规体系 明确人机权责关系(如医疗误操作责任划分)与伦理决策机制(如自动驾驶道德困境)[22]
刘璐也被Meta挖走了!华南理工校友,创造了4o吉卜力爆款
量子位· 2025-07-15 08:34
核心观点 - Meta近期从OpenAI挖角多名核心研发人员,包括GPT-4o图像生成功能的主要开发者刘璐和Allan Jabri,加速其AI人才布局 [1][5][6][30] - 刘璐作为GPT-4o"吉卜力风"的创造者,技术背景深厚,曾在谷歌参与Gemini研发并拥有多项学术突破 [2][8][16][21][23] - Meta的挖角策略聚焦OpenAI华人技术骨干,其"超级智能实验室"已吸纳至少10名华人专家,其中8人来自OpenAI [34][35][36] 人才流动 - 刘璐从OpenAI转投Meta仅入职一年,此前在谷歌DeepMind参与Gemini图像感知模块开发,并主导了GPT-4o的吉卜力风格图像生成功能 [2][21][23] - 同期被挖的Allan Jabri为GPT-4o核心架构师,曾在Meta旗下FAIR工作两年,此次属于回归老东家 [30][31][32] - Meta近期还挖走OpenAI苏黎世办公室ViT核心作者团队,持续扩大AI人才储备 [36] 技术成就 - 刘璐开发的GPT-4o吉卜力功能上线10天即吸引1.3亿用户,生成超7亿张图像,成为现象级产品 [26] - 其学术贡献包括:参与谷歌Gemini模型(论文引用5030次)、开发NAS算法评估基准NATS-Bench(引用1093次) [16] - 研究领域涵盖元学习、少样本学习及图神经网络,在NeurIPS/AAAI/IEEE TKDE等顶刊发表多篇论文 [13][17] 教育背景 - 刘璐本科以3.84 GPA毕业于华南理工大学电子科学与技术专业,曾获全国信息学奥赛省级一等奖 [8][9] - 在悉尼科技大学获机器学习博士学位,导师为AAII研究所龙国栋教授,研究隐私保护AI及设备端智能 [10][12][18] 行业影响 - Meta通过开源策略吸引OpenAI技术骨干,可能加速实现GPT级别模型的开源化 [7] - OpenAI仍保留部分顶尖华人研究员,如ICLR 2025获奖者漆翔宇、DALL-E 3贡献者Li Jing等 [41] - 人才争夺反映AI行业竞争白热化,Meta近半年已从谷歌/苹果/OpenAI等多方吸纳专家 [35][36][41]
又一华人科学家被挖走,OpenAI人才加速流失
虎嗅· 2025-07-12 18:43
核心观点 - OpenAI面临双重打击:Meta挖走两名关键研究员[3][4],谷歌截胡其拟收购的AI编程公司Windsurf[5][27] - 科技巨头人才争夺战白热化:Meta为挖角华人研究员开出数亿美元薪酬包[24][25],OpenAI被迫以股权激励防御[56] - OpenAI与微软关系紧张:微软阻挠Windsurf收购[36],并拖延其公司结构转型[41] 人才流动 - Meta新成立的超级人工智能实验室挖走OpenAI两名研究员:Allan Jabri(视觉学习专家)和Lu Liu(4o图像生成团队成员)[12][13][20] - Lu Liu为90后华人学者,研究方向涵盖元学习、图神经网络及隐私保护AI[15],其离职使Meta公开挖角的华人研究员达11名[24] - Meta为顶尖人才提供天价薪酬包:余家辉等9名OpenAI研究员获4年3亿美元,庞若鸣单笔2亿美元[24][25] - OpenAI反击招募4名新员工:包括Meta资深研究员Angela Fan及xAI/特斯拉系人才[50][52][54] 并购竞争 - OpenAI原计划30亿美元收购Windsurf以补足编码生态短板,但交易因微软反对而终止[29][36] - 谷歌以24亿美元获得Windsurf技术授权并吸纳其核心团队,CEO等将加入DeepMind开发Gemini[9][32] - 该交易采用"非收购式鲸吞"模式规避垄断风险,类似微软对InflectionAI的操作[34] 公司治理 - OpenAI转型为PBC公益公司受阻:微软拥有对重大事项的实质否决权[39],双方因AGI条款(千亿美元利润分成)僵持[40][41] - 若2025年10月前未完成转型,66亿美元融资中的6.6亿美元将转为负债[42] - 公司2024年股权激励达44亿美元(营收37亿美元的119%),为2023年的5倍[56] 行业动态 - AI竞赛加剧:谷歌/Meta/xAI持续迭代模型,OpenAI的GPT-5却多次延期[44] - 人才成本飙升:Meta将顶级研究员年薪推至数亿美元量级[24],OpenAI被迫跟进导致股权激励超营收[56] - 技术路线曝光:Lu Liu的研究显示OpenAI在少样本学习/边缘计算AI的布局[15],Windsurf交易反映其对编码RLHF数据的渴求[29]
新西兰奥克兰大学段雨晴:以脏数据为突破口,Z世代重塑AI创新范式
环球网资讯· 2025-07-06 14:52
大数据分析驱动AI优化与创新 - 驱动AI优化的关键不仅在于数据数量 更在于用聪明方式解读复杂性 这是Z世代的独特优势 [2] - 适度保留"脏数据"在某些场景更具价值 例如金融欺诈检测中 异常数据可能包含关键线索 [3] - Z世代在信息爆炸环境中培养了从噪声中提取价值信号的能力 这种能力同样适用于AI系统 [3] 跨域数据融合的价值 - Z世代的多维思维模式为理解大数据价值提供独特视角 金融分析正融合图像 社交媒体等多源数据 [4] - ESG研究中 需要将企业环境影响转化为量化风险指标 这需要洞察力与创新思维而不仅是技术手段 [4] - 通过融合谷歌搜索趋势 地理位置等实时信息 可在传统经济指标滞后时及时掌握社会运行状态 [4] 从大数据样本向小数据样本转变 - AI领域正经历从依赖海量数据到借助少量样本快速适应的技术跃迁 主要得益于元学习发展 [4] - 医疗领域元学习可实现从常见病学习通用模式 再通过十几例罕见病样本实现有效识别 [5] - 金融领域可借鉴成熟市场经验 使AI快速适应数据稀缺的新兴市场 [5] - 小数据样本带来隐私保护和响应速度提升两大优势 减少对数据量的依赖 [6] Z世代的独特能力 - Z世代具备创造力 适应力和对世界的敏锐感知 这些能力对处理复杂信息 实现跨领域融合至关重要 [6] - 从噪声中提取价值信号的能力 以及多维思维模式 是Z世代推动AI创新的核心优势 [3][4]