合成数据
搜索文档
事关人形机器人,英伟达、宇树科技、银河通用罕见同框发声,信息量很大
21世纪经济报道· 2025-08-11 07:49
物理AI与机器人产业趋势 - 计算机产业过去主要影响信息空间,规模约5万亿美元,而物理世界产业规模超100万亿美元,人工智能将连接两者并释放更大价值[3][5] - 中国具备发展物理AI的独特优势:全球近50%的AI研究人员和开发者集中在中国,拥有顶尖电子制造能力和大规模测试场景[5][32] - 英伟达提出推动机器人发展的三类关键计算机:机器人本体计算机(如Jetson Thor)、AI工厂计算机(DGX/HGX系统)、仿真计算机[5] 人形机器人商业化进展 - 宇树科技人形机器人R1售价从9.9万元降至3.9万元人民币,支持定制化并计划年底量产,硬件成本已非核心障碍[6][12] - 银河通用预计人形机器人产值每三年增长10倍,头部企业销量将从1000台增至10万台,产值突破1000亿元并超越工业机械臂市场[7][14] - 当前限制规模化部署的核心是具身智能模型泛用性不足,而非硬件能力[12][27] 仿真技术与合成数据应用 - 仿真技术是训练安全可靠机器人系统的唯一选择,可模拟罕见或高风险场景(如自动驾驶避让儿童)[8][9] - 银河通用99%训练数据为合成数据,仅1%来自真实世界,合成数据是加速具身智能落地的关键[7][26] - 英伟达通过提升仿真精度、AI辅助生成虚拟环境、现实世界数字化三方向缩小仿真与现实差距[19][20][21] 关键技术突破方向 - Jetson Thor相比前代产品显著提升计算能力,支持复杂神经网络推理和高带宽传感器数据处理[15] - 视频生成模型作为"世界模型"驱动机器人动作的探索取得进展,谷歌最新成果验证该方向潜力[22][23] - 多模态大模型发展受限于数据不足,文本-图像-动作配对数据稀缺,仿真技术可缓解数据瓶颈[25][26] 行业应用场景展望 - 工业场景中搬运和分拣是机器人优先落地领域,银河通用机器人搬运速度已接近人类水平,预计年底部署数十台[17][18] - 家庭场景普及面临伦理和安全挑战,技术成熟周期将长于工业领域[16] - 通用机器人需突破目标识别、定位和抓取三大能力,解锁千亿级市场空间[27][29] 中国机器人生态优势 - 中国在AI人才储备、硬件制造、场景测试方面形成独特闭环生态,助力企业快速迭代[5][32] - 宇树科技自主开发20自由度灵巧手,目标1-2年内实现自然交互(如无需适配的倒水指令)[7] - 银河通用下一代纯双足机器人基于OpenWBT_Isaac平台,强化移动与操作能力[8]
英伟达、宇树、银河通用问答全文:未来10年机器人如何改变世界
21世纪经济报道· 2025-08-10 22:45
物理AI与机器人产业趋势 - 物理AI将连接信息世界与物理世界,打开100万亿美元市场空间[1][2] - 中国具备独特优势:全球近50%AI人才、完整电子制造产业链、大规模测试场景[2] - 人形机器人产值预计每三年增长10倍,10年内或超越工业机械臂千亿规模[12][27] 英伟达技术布局 - 构建三类关键计算机:机器人本体嵌入式(Jetson Thor)、AI工厂(DGX/HGX)、仿真系统[2] - Jetson Thor突破性提升神经网络推理能力,支持复杂传感器数据处理[14] - 仿真技术三大发展方向:提升物理精度、AI辅助环境生成、现实世界数字化[19][20] 企业商业化进展 - 宇树科技人形机器人价格从9.9万降至3.9万元,年底实现量产[3] - 银河通用G1 Premium搭载Jetson Thor,工业搬运效率接近人类水平[3][17] - 合成数据占比达99%,成为具身智能模型训练核心[4][26] 关键技术突破方向 - 具身智能模型泛化能力是当前最大瓶颈,硬件成本已非主要障碍[10] - 移动+抓取+放置三能力突破将打开千亿级应用场景[27] - 视频生成模型作为世界模型的探索取得初步成效[22][23] 行业生态与合作 - 中国形成人才-制造-场景协同优势,加速物理AI落地[32] - 英伟达与生态伙伴共同攻克Sim2Real差距问题[21] - 轮式与双足形态将长期并存,双足提供更高通用性[29][30] 应用场景展望 - 工业场景优先突破:汽车工厂搬运/码垛闭环预计年底部署[17] - 家庭场景面临伦理安全挑战,普及周期更长[16] - 医疗等高精度领域依赖仿真数据确保可靠性[5][6]
数据困局下的具身智能,谁能率先破局?
机器之心· 2025-08-10 09:30
数据困局下的具身智能 - 具身智能面临真实数据严重不足的挑战,目前多数机器人基础模型仅依赖不足1%的真实操作数据,导致物理常识缺失和泛化能力受限[5] - 行业对数据类型选择存在分歧:真实数据能反映物理交互但采集成本高,合成数据成本低且易扩展但存在"domain gap"问题[6][7] - 真实数据派代表Levine指出,模型能力提升会放大仿真与现实的差异,削弱泛化能力,认为只有真实数据才能实现通用具身智能[7] - 合成数据派代表王鹤提出需要上万亿token规模数据,但当前最大数据集仅百万级别,认为具身智能爆发必须依赖合成数据先行[8] - 合成数据应用案例:GraspVLA模型通过十亿级合成数据预训练+少量真实数据微调,已在零售、导航场景实现商业部署[8] 技术路线之争 - 遥操作成为真实数据主要采集方式,依赖人类示范支持模仿学习,但面临控制效率与扩展能力的平衡问题[9] - Sim2Real技术路径依赖合成仿真数据,优势在于可控性强、成本低,适合大规模预训练与策略泛化[9] - 多模态遥操作系统探索语言+手势+触觉融合,可能降低人类操控门槛[1] 商业模式创新 - OpenAI董事会主席Bret Taylor批判"按token计费"模式,认为市场终将选择"按成果付费"[2] - 提出"应用AI"是创业方向,"长尾Agent公司"可能取代传统SaaS[2] - Sierra公司正在实践结果导向的商业模式,探索AI编程新范式[2] 行业动态 - Skild AI最新进展聚焦解决真实数据不足问题,倡导融合多样化数据尤其是大规模视频数据[5] - 本期通讯包含30项AI&Robotics要事,其中国内8项、国外9项、技术13项[2]
创客中国杭州大赛总决赛“新”意十足
杭州日报· 2025-08-07 11:26
大赛概况 - 第十届“创客中国”暨“浙江好项目”中小企业创新创业大赛杭州赛区总决赛于8月6日在萧山区举行 [3] - 大赛共有323个报名项目 其中约三分之一是2023年之后成立的新公司和新团队 [4] - 大赛累计培养了753家创新型中小企业、431家省级专精特新中小企业和80家国家级专精特新“小巨人”企业 [6] 获奖项目与技术创新 - “电子专用高端超细金属粉末国产化”和“便携移动式五轴加工机器人”项目分获企业组和创业组一等奖 [3] - 新川新材料公司在用于MLCC内电极的200纳米以下高端成品镍粉上实现国产化突破 解决了关键“卡脖子”问题 [5] - 新川新材料全球首创AI服务器芯片电感用超细软磁合金粉 能显著提升服务器运行的稳定性和效率 [6] - 该超细软磁合金粉产品自去年年中上市以来 销售额已超1.3亿元 [6] - 公司的核心技术壁垒在于开发了更先进的工艺并配套了自主研发的设备 [6] 新兴赛道与产业生态 - 参赛项目主要来自新材料、高端装备制造等“五大产业生态圈”战略性新兴产业以及合成生物、低空经济、类脑智能等潜力产业 [5] - 电子专用高端超细金属粉末是电子行业不可或缺的核心基础材料 广泛应用于手机、电脑、AI服务器等高端电子元器件 [5] - 金属粉末的小型化和均匀化推动了电子行业向小型化、精细化、智能化发展 [5] AI数据服务创新 - 卓印智能公司的“懂物理世界的GenAI 数据引擎”项目通过“合成数据”技术解决大模型训练数据采集成本高、隐私敏感和极端场景数据难获取的痛点 [4] - 该公司基于自研的空间生成模型 能快速低成本地生成符合物理规律和法律法规的场景“合成数据” [4] - 在自动驾驶等领域 生成式数据可用于弥补如交通事故等难以采集的真实数据缺口 [4]
数据标注领域真正的巨头:0融资、10亿美元营收
虎嗅· 2025-07-30 14:55
本文来自微信公众号:Founder Park,编译:Founder Park,原文标题:《0 融资、10 亿美元营收,数据 标注领域真正的巨头,不认为合成数据是未来》,头图来自:AI生成 比 Scale AI 更值得关注的 AI 数据标注公司出现了。 同样是华人创始人,2020 年创立,120 人左右的团队,去年营收达到 10 亿美元,至今没有融资, Google、OpenAI 和 Anthropic 都是它的客户。 对比之下,Scale AI 去年的收入是 8.7 亿美元,已经是 F 轮融资,累计融资 16 亿美元。 在被 Meta 收购了近一大半股份、创始人 Alexandr Wang 加入 Meta 之后,Scale AI 被谷歌、OpenAI 等 大客户暂停合作,Surge AI 的优势更加明显,隐约要成为数据标注领域的领头者。 创始人兼 CEO Edwin Chen 是一个很独特的创始人,曾在谷歌、Facebook 和 Twitter 担任机器学习工程 师的他,对于数据有非常多有价值的深入思考。Edwin Chen 最近接受了几家播客的采访,对于创业和 模型的数据训练,输出了不少观点。 比如在他看来 ...
0 融资、10 亿美元营收,数据标注领域真正的巨头,不认为合成数据是未来
Founder Park· 2025-07-29 19:49
公司概况 - Surge AI是一家专注于AI数据标注的公司,2020年由华人创始人Edwin Chen创立,团队规模约120人,2023年营收达10亿美元,至今未进行融资 [1] - 公司客户包括Google、OpenAI和Anthropic等头部AI企业,已成为数据标注领域最大的人类数据服务商 [5] - 对比竞争对手Scale AI,后者2023年收入8.7亿美元,已完成F轮融资累计16亿美元,但被Meta收购大部分股份后遭大客户暂停合作 [2] 商业模式 - 核心产品是直接用于训练和评估AI模型的高质量数据,包括监督微调数据、偏好数据等,区别于传统人力外包公司 [4] - 交付形式不仅包括数据本身,还包括相关洞察如损失模式、失败模式等,形成完整的数据应用生态 [15] - 采用不融资策略,依靠自身盈利能力发展,保持公司控制权和产品专注度 [7][9] 技术优势 - 构建复杂算法系统衡量和改进数据质量,而非简单依赖人力外包 [17][18] - 平台技术能识别高质量内容,如创意写作、编程解决方案等主观性强的工作 [20][21] - 采用类似Google搜索的质量评估体系,收集多维度信号输入机器学习模型 [23] 行业观点 - 合成数据被高估,海量合成数据中绝大部分是无用噪音,现实表现糟糕 [32][33] - 大语言模型竞技场误导模型优化方向,导致模型追求表面特征而非实质质量 [38][39] - 人类反馈永不过时,细致的人类评估是前沿模型实验室公认的黄金标准 [37][50] 数据质量 - 高质量数据标准强调主观创造力和智慧,而非机械满足条框要求 [46][47] - 不同领域需定制化质量评估标准,结合整体性原则与专业差异 [49] - 真正的质量评估需要深入人类审查,而非五秒直觉判断 [50] 行业趋势 - 未来AI训练需要多种数据结合,包括强化学习环境和专家推理轨迹等 [31] - 模型市场将呈现多样化格局,不同公司侧重不同能力和个性 [44][45] - AI工具可能放大工程师能力差异,使10倍工程师进阶为100倍工程师 [61][62]
互联网数据“耗尽”后,高质量训练数据从哪里获得?专家热议
南方都市报· 2025-07-29 09:53
人工智能数据治理与发展 - 2025世界人工智能大会聚焦大模型时代数据治理与伦理建设 行业共识认为互联网数据将在2026年左右被大模型训练耗尽 需建设新的高质量数据集 [1] - 高质量数据集获取路径包括垂直行业专业数据(如金融 教育 文旅) "众包众创"联合学术机构 以及具身智能等领域的真机采集 [5][6] - 行业呼吁形成数据"联盟"共享语料 但垂直行业数据作为公司护城河 共享机制仍需探索 [5] 数据标注行业转型 - 数据标注行业正从人力密集型转向知识密集型 主力从业者从四五线城市大专生转向高校学者和行业专家 [3] - 大模型需求推动标注内容复杂化 涉及学术难题和专业知识 需构建强推理思维链数据和行业语料库 [3] - 简单标注工作或逐渐被机器取代 高阶发展趋势为专家人工编写后机器二次合成 [4] 合成数据应用与挑战 - 合成数据成为应对训练数据短缺的新思路 但存在缺陷 误差 歧视等质量问题 [5] - 算法偏见可能导致合成数据放大原有偏见 存在"Garbage in garbage out"风险 [5] - 合成数据存在伦理和隐私风险 逆向工程可能泄露原始数据中的个人信息 [5] 语料服务创新实践 - 库帕思科技启用全国首个语料运营公共服务统一门户 其语料工具链平台已开发400多个功能模块 应用于医疗 教育等领域 [6] - 大模型语料治理与传统数据治理差异显著 需处理高密度 高专业性的非结构化数据(如数学推理 化学分子式) [6][7] - 传统数据治理侧重清洗数值型结构化数据 而大模型需结合图像识别 NLP等技术处理多模态内容 [6][7]
硬核「吵」了30分钟:这场大模型圆桌,把AI行业的分歧说透了
机器之心· 2025-07-28 12:24
大模型技术演进与发展之路 核心观点 - 大模型技术从预训练为主转向强化学习主导的范式转变 [10][17][19] - 行业面临Transformer架构局限性、数据枯竭、开源闭源博弈等核心挑战 [31][41][59] - Agent应用爆发与基础模型研发需双轨并行 [53][54][55] 训练范式转变 - OpenAI从GPT-4o的预训练主导转向o1的强化学习后训练,提出测试时间扩展新维度 [13][14][15] - 强化学习可解决行为克隆难以建立目标导向推理能力的问题,但需突破自然语言反馈限制 [21][22][23] - 预训练仍是强化学习冷启动的基础,但需解决奖励机制和算力效率挑战 [25][26][27] 模型架构演进 - Transformer面临O(n²)扩展性、显存占用和长期记忆三大瓶颈 [31] - 优化路径包括RoPE位置编码、分组查询注意力等改进,以及Mamba等非Transformer架构探索 [33][34] - 智能体时代可能推动RNN架构回归,需建模无限上下文能力 [37][38] 数据供给挑战 - 高质量语料预计2028年耗尽,合成数据被Anthropic/OpenAI等广泛应用但存在迭代崩溃风险 [41][42][43] - 英伟达提出物理仿真生成边缘案例,需建立真实世界验证闭环 [44][45] - 行业数据未充分挖掘,应建立非敏感数据共享机制提升预训练质量 [46][48][51] 商业化落地路径 - 2025年Agent产品成爆点(如OpenAI Operator、智谱AutoGLM),但基础模型研发仍持续 [53][54] - 大模型当前相当于自动驾驶L3阶段,距AGI仍有差距 [55] - 金融等领域落地需突破大规模数据处理等技术瓶颈 [56][57] 开源生态影响 - DeepSeek等开源模型性能逼近闭源,冲击传统GPU/闭源产业链 [60][61] - 开源推动资源合理配置并形成行业压力,但需解决分叉滥用问题 [63][64][67] - 英伟达支持开源算力引擎,未来可能走向混合模式 [65][66]
bootstrap 到十亿美元 ARR:Surge AI 这匹黑马如何颠覆 Scale 霸权 ?
海外独角兽· 2025-07-25 17:52
核心观点 - Surge AI 是一家专注于高质量数据标注的公司,2024年ARR突破10亿美元,超越行业巨头Scale AI的8.7亿美元收入[3] - 公司定位为AI模型提供高质量数据标注服务,尤其在NLP、对抗性训练和RLHF领域构建技术壁垒[3] - 客户覆盖Google、OpenAI、Anthropic等顶级科技公司,强调"数据质量决定野心的上限"[3] - Meta以140亿美元投资Scale AI后,公司启动首次外部融资计划募集10亿美元,目标估值超150亿美元[4] - 公司认为高质量数据是AGI竞赛的关键纽带,语义理解与人类洞察力融合是突破瓶颈的核心[4] 01 数据标注市场 - 行业分化为两类:BPO"人力中介"(如Genpact)和AI-native"加工厂"(如Scale AI、Surge AI)[11] - BPO模式依赖人力规模化但难以保证质量,AI-native模式通过技术实现10倍效率提升[11][12] - 客户核心关注点:数据质量、处理效率、成本、可扩展性、合规性等7大维度[12] - 合成数据被高估,实际应用中易出现"狭窄场景崩溃",人工数据在敏感领域仍具不可替代性[14][17] - 垂类数据(医疗、金融)成为增长点,通用领域需求趋缓[20][23] 02 创立Surge的初衷 - 创始人Edwin Chen因在Twitter遭遇数据标注低效问题(10,000条数据交付周期数月)而创立公司[24] - 公司组建由哲学家、工程师等构成的精英标注团队,开发任务分配软件提升效率[24] - 采用Bootstrap模式,成立一个月即盈利,拒绝硅谷"先融资后创业"的传统路径[25] - 核心竞争力源于"质量大于一切"原则,客户反馈"没有你就做不到这一点"成为行业口碑[25] 03 高质量交付背后的底层技术 - 通过母语级标注团队捕捉语言nuance(如反讽"Yay, cold McDonald's"),降低误标风险[28][29] - 设计人机协同工具链:AI预筛高风险样本→人工交叉验证(如"how dare you"语气修正)[30] - 引入红队测试机制模拟攻击场景,帮助客户识别模型安全漏洞[31] - 动态偏见管控:初期高比例审核(覆盖敏感群体)→后期降至2%,平衡偏见利弊[32][33] - 交付速度形成护城河,API支持新任务即时启动,质量审核周期领先同行[34] 04 客户案例1:OpenAI GSM8K数据集 - 为OpenAI构建8500道小学数学题数据集,要求每题包含2-8步推理且答案为整数[36][38] - 标注员需STEM背景,提交试写题目并通过审核,采用"双人独立解题"歧义检测机制[36][39] - 通过句子嵌入+余弦相似度过滤重复场景,最终数据集成为LLM推理能力评估标杆[40] 05 客户案例2:Anthropic训练Claude - 解决Anthropic三大痛点:高质量RLHF数据获取难、质控体系搭建难、工具开发资源占用[43][45] - 提供科学家团队设计的专有质控技术、领域专家标注团队和快速实验接口(1-2周评估)[46][48] - Anthropic联合创始人评价Surge为"绝佳合作伙伴",支撑AI对齐研究[51] 06 创始人团队 - Edwin Chen:MIT复合学科背景,前Google/Facebook工程师,发现GoEmotions数据集30%标签错误[56] - Andrew Mauboussin:哈佛毕业,前Twitter工程师,主导实时API和多语言数据收集[59][60] - Bradley Webb:Facebook前数据运营负责人,将合规性打造为公司核心壁垒[35][62]
无线合成数据助力破解物理感知大模型数据瓶颈,SynCheck获顶会最佳论文奖
机器之心· 2025-07-23 16:57
无线感知与合成数据技术 - 无线感知技术通过捕捉无线信号的反射特性,突破传统感官限制,实现无感监测与精准解析,重塑人机交互边界 [1] - 无线感知使机器能够感知墙壁后的动静、数米外的动作及人类难以察觉的微妙变化 [1] 大模型与物理世界交互 - 构建能够理解物理原理(如电磁场、光学、声学)并与物理世界交互的大模型面临数据稀缺挑战 [2] - 语言和视觉大模型可从海量文字和视频数据中学习,但物理世界交互数据采集难度大,难以支持大模型训练需求 [2] SynCheck 合成数据解决方案 - 北京大学与匹兹堡大学团队提出 SynCheck,通过生成与真实数据质量相近的合成数据解决数据稀缺问题 [3] - 研究提出两个创新质量指标:亲和力(衡量与真实数据的相似度)和多样性(评估覆盖真实数据分布的范围) [5] - 现有无线合成数据普遍存在亲和力不足问题,导致标签错误和任务性能下降 [9] 合成数据质量评估方法 - 研究通过贝叶斯分析和性能指标建立理论支撑的通用评估框架,引入“边际”概念实现跨数据集公平比较 [7] - 动态校正合成数据分布偏差,使模型性能保持稳定提升,最佳情况下性能提升达12.9% [13][15] 合成数据应用与性能突破 - 采用半监督学习框架结合合成与真实数据,过滤低亲和力样本并分配伪标签,无需修改生成模型流程 [11] - SynCheck 在质量无关方法导致性能下降13.4%的最坏情况下仍能实现4.3%的性能提升 [13] 学术界观点与未来方向 - 学术界对合成数据存在分歧,部分学者警示“模型崩塌”风险,另一部分认为验证器机制可规避风险 [17] - 研究团队未来将推动无线大模型训练范式革新,探索多元数据源融合及通用预训练框架 [18]