2.5D封装

搜索文档
一文看懂先进封装
半导体芯闻· 2025-04-28 18:15
先进封装技术演进 - 半导体封装功能从单纯保护芯片演变为集成多个元件的复杂系统,先进封装成为提升性能的关键[1] - 先进封装无明确定义,泛指比传统单芯片封装更复杂的方案,通常集成多个元件并采用2.5D/3D排列方式[1][7] - 封装技术发展直接关联带宽和功耗两大趋势,通过缩短互连距离提升性能并降低能耗[3][5][6] 封装架构创新 - 表面贴装技术(BGA)取代通孔封装,实现双面元件布局并提高连接密度[8][9] - 阵列引线技术突破边缘引线限制,支持高密度互连(数千连接)并优化信号完整性[11] - 多组件集成通过封装内互连减少PCB连接,遵循类似芯片集成的伦特法则效应[15][17] 关键组件技术 - 再分布层(RDL)实现信号模式转换,解决封装与PCB布线规则差异问题[18][19] - 扇入/扇出技术通过灵活布线实现芯片级封装(CSP)或更大封装尺寸[20][22] - 2.5D/3D架构通过中介层和芯片堆叠提升集成度,HBM内存堆栈是典型3D应用[27][32] 材料与制造工艺 - 有机基板采用ABF等高性能介质材料,平衡信号完整性与热膨胀系数[34] - 硅/玻璃/有机中介层提供不同性价比选择,硅中介层支持最高布线密度[55][56][59] - 混合键合技术消除中间材料,直接连接焊盘与氧化物提升连接质量[79][81] 设计与测试挑战 - 先进封装需芯片/封装/系统协同设计,热分析和信号完整性验证至关重要[107][110] - IEEE 1149/1687等测试标准需适配多芯片环境,支持扫描链集成与并行测试[116][119][123] - 共面性/电迁移/热机械效应构成主要可靠性风险,需材料与工艺优化[127][128] 安全与供应链 - 2.5D封装信号暴露增加信息泄露风险,3D堆叠和混合键合提升逆向工程难度[132][133] - 供应链环节可能引入白盒攻击,需控制组装测试流程防范内部威胁[133][134]