Workflow
AutoGPT
icon
搜索文档
红杉对话 LangChain 创始人:2026 年 AI 告别对话框,步入 Long-Horizon Agents 元年
36氪· 2026-01-28 09:01
行业核心观点 - 2026年是AGI(通用人工智能)的“实干者”元年,其核心是具备自主规划、长时间运行和目标导向能力的“长程智能体”,标志着AI从“对话者”向“执行者”的范式转变 [1] - 长程智能体的核心价值在于为复杂任务提供高质量的“初稿”,其应用正从编码、Excel自动化等垂直领域向所有复杂任务流扩散 [1][5] - 智能体发展的第三个拐点已经到来,这得益于模型能力的增强与围绕模型构建的、有主见的“软件外壳”的共同进化 [2][11] 长程智能体的爆发与核心应用 - 长程智能体已开始真正发挥作用,其核心理念是让大语言模型在循环中自主决策,早期代表如AutoGPT [2] - 编码领域是长程智能体最快起飞和案例最多的应用场景 [2][5] - 其他杀手级应用场景包括:AI站点可靠性工程师、研究分析以及金融等领域中需要生成任务初稿或总结报告的工作 [5][6][7] - 在客户服务等场景,长程智能体可在后台运行,为转接的人工客服生成前因后果总结,提升效率 [7] 智能体架构:从框架到软件外壳 - 智能体架构正从通用的“框架”时代进入更有主见的“软件外壳”时代,后者是开箱即用、内置了预设规划工具等最佳实践的软件环境 [8][10][11] - 软件外壳的关键能力包括:上下文压缩、文件系统交互以及子智能体调度 [11][18] - 模型能力的提升与软件外壳工程设计的进步共同促成了当前突破,特别是推理模型的进步和一系列上下文工程原语的成熟 [11][12] - 在编码基准测试中,经过特定软件外壳优化的智能体性能显著超越原始模型,表明第三方开发者能在该层面挖掘巨大性能提升 [15][17] 编码智能体与通用智能体的演进 - 编码智能体可能是通用智能体的终极形态,因为“写代码”本身就是让计算机工作的极佳通用手段 [1][23] - 构建长程智能体的一个关键共识是必须赋予其文件系统访问权限,这有助于高效的上下文管理 [11][23] - 未来的竞争焦点将集中在围绕“让大语言模型循环运行”这一核心算法的上下文工程技巧上,例如记忆管理和上下文压缩的自动化 [22][23] 智能体开发与传统软件开发的差异 - 最大区别在于:智能体的逻辑部分存在于非确定性的黑盒模型中,而非全部写在可控代码里,因此必须通过实际运行来理解其行为 [25] - “追踪记录”成为智能体开发的“单一事实来源”和团队协作的核心支点,用于复现智能体内部每一步的上下文状态,这不同于传统软件仅在出错时查看日志 [25][26] - 智能体开发更具迭代性,因为其发布前的行为是未知的,需要通过在线测试和真实世界交互来不断调整 [27] - 现有软件公司因其拥有的数据和API,在接入智能体时具有巨大价值,但关于如何处理数据的“指令”部分可能是全新的 [29] 评估、记忆与自我改进 - 智能体的评估需要引入人类判断,其代理方式是使用“大语言模型作为评判者”,但关键在于确保其与人类判断对齐 [32][33] - 记忆功能是智能体形成竞争壁垒的关键,一个经过长时间磨合、内化了特定任务模式与背景记忆的智能体将极具价值 [36] - 智能体已具备通过反思追踪记录来自我改进的能力,体现在自动纠错、记忆更新等方面,实现了一种有人类在环的递归式自我改进 [33][34][35] 未来的交互与生产形态 - 理想的智能体交互是异步管理和同步协作的统一,用户需要能在两种模式间无缝切换 [37][38][40] - 未来的交互范式可能围绕“共享状态”展开,如同步查看和修改文件系统、云端文档中的同一份资料,Anthropic的Coworker是范例 [38] - 代码沙箱和命令行访问将是未来智能体的核心组件,文件系统访问权限被认为是所有智能体的标配 [41][42][44]
红杉对话 LangChain 创始人:2026 年 AI 告别对话框,步入 Long-Horizon Agents 元年
海外独角兽· 2026-01-27 20:33
文章核心观点 - 2026年是AI从“Talkers”转向“Doers”的元年,其核心载体是具备自主规划、长时间运行和目标导向能力的“长程智能体”[2] - 长程智能体爆发的关键在于模型能力的提升与围绕模型构建的、有主见的“软件外壳”的共同进化,其杀手级应用是为复杂任务提供高质量初稿[3][4][5] - 在长程智能体的开发范式中,“追踪记录”取代代码成为新的“单一事实来源”,理想的交互模式是异步管理与同步协作的统一[3][25][35] Long-Horizon Agents的爆发 - 长程智能体已开始真正发挥作用,其核心是让大语言模型在循环中自主决策,如早期的AutoGPT[3][4] - 此类智能体的价值在于为需要长时间运行、产出初稿的场景提供支持,典型应用包括AI编码、AI站点可靠性工程师以及研究分析[5][6] - 智能体虽难以达到99.9%的可靠性,但能承担大量工作,并采用人机协作模式,例如在客服场景中,后台智能体可为人工生成总结报告[5][6] 从通用框架到Harness架构 - Agent的发展经历了三个阶段:早期的简单Prompt链、引入工具调用后的自定义认知架构,以及当前以“上下文工程”为核心的Harness时代[20][21] - Harness是一种开箱即用、有强预设的软件外壳,其核心价值在于管理上下文压缩、规划工具和文件系统交互等原语[8][9] - 模型能力的提升与Harness工程的进步共同促成了突破,例如在编码领域,经过Harness优化的智能体性能波动巨大,同一模型的表现可因Harness不同而有显著差异[10][14] - 在Terminal-Bench 2.0榜单中,由Factory公司构建的Droid智能体使用GPT-5.2模型取得了64.9%的准确率,展示了第三方Harness的潜力[15] Coding Agent是通用AI的终局形态吗 - 文件系统权限被认为是所有长程智能体的标配,它在上下文管理中极为有用,例如存储原始信息以供查阅[9][24] - 一个核心的行业思考是:所有智能体本质上是否都应该是编码智能体,因为“写代码”本身就是让计算机工作的通用手段[22][23] - 编码能力对于处理长尾复杂用例可能是无可替代的,但目前浏览器操作等能力尚未成熟[39] 构建Long Horizon Agent vs 构建软件 - 构建智能体与构建传统软件的根本区别在于,其核心逻辑部分存在于非确定性的模型黑盒中,而非全部写在代码里[25] - 因此,智能体的“单一事实来源”是代码加上“追踪记录”,开发者必须通过运行和观察Trace来理解其行为[25][26] - 智能体开发更具迭代性,发布前的行为未知,需要通过更多交互来使其达标,这使得内存和自我改进能力变得重要[27][34] - 对于现有软件公司,其积累的数据和API是构建智能体Harness的巨大优势,但关于如何处理数据的指令部分可能是全新的[28] 从人类判断到LLM-as-a-Judge - 评估智能体需要引入人类判断,而“LLM-as-a-Judge”是建立人类判断代理的关键,前提是必须与人类判断对齐[30][31] - 智能体具备反思自身追踪记录的能力,这种能力被用于评估、自动纠错和更新内存,本质上是同一回事[31] - 一种新兴模式是让编码智能体通过命令行工具获取Trace,自行诊断问题并修复代码,实现有人类在环的递归自我改进[32][33] 未来的交互与生产形态 - 在特定垂直工作流中,通过长时间磨合积累的记忆能形成极高的竞争壁垒[3][35] - 未来的理想交互形态是混合模式:用户默认异步管理后台运行的多个智能体,但在关键时刻可切换到同步聊天模式,并基于共享状态进行协作[35][37] - 纯异步模式目前难以跑通,因为模型仍需人类在环进行纠错,注定需要在异步和同步之间切换[37] - 代码沙箱将是未来的核心组件,文件系统访问和编码能力被认为是智能体的标配,而浏览器操作能力尚不成熟[38][39]
Cursor不香了?前0.01%大神倒戈Claude,万字叛逃笔记爆火
36氪· 2026-01-26 12:11
行业趋势与范式转移 - AI编程工具正经历从代码辅助到智能体(Agents)的范式转移,Claude Code 2.0的发布被视为一个关键的“抽象层级”提升,开发者从审查代码行转向验证行为 [3][17] - 行业早期项目如AutoGPT虽引爆市场(GitHub最快达到10万星标),但实用性有限,标志着探索阶段 [5][6][7] - 2024年9月Cursor Composer的发布是一个重要节点,使生成式AI接管了资深用户90%的代码编写工作,标志着工具成熟度达到新高度 [14] 核心产品对比与迁移动因 - 资深用户从Cursor(全球前0.01%用户)全面迁移至Claude Code 2.0,核心原因在于其“异步优先”的工作流迫使开发者提升抽象层级,摆脱低维度的代码审查 [20] - Claude Code 2.0的模型(Opus 4.5+)针对自身环境进行了RLHF优化,在文件搜索、工具使用等层面表现更佳,形成主场优势 [21][22] - 相较于Cursor,Claude Code 2.0在成本效率与可定制性上更具优势,其开放的架构允许深度DIY和组合,而非封闭黑盒 [23] - Cursor在追求像素级完美前端细节或学习编程的场景下仍有价值,但Claude Code 2.0在追求产出效率的“抽象极大主义者”眼中是更优选择 [24] 生产力工具链配置 - 高效工作流推荐组合使用多种工具:Claude Code(Opus 4.5)负责规划与核心代码生成,Cursor(GPT 5.2/Sonnet 4.5)用于UI打磨,ChatGPT作为第二意见顾问,并搭配极速终端和语音输入工具 [25] - 用户提供了自动化配置命令(`/setup-claude-code` 和 `/setup-repo`),可像面试官一样了解需求并自动完成全局及项目级配置,降低上手门槛 [25][26] 核心使用原则与高级技巧 - **上下文管理**:Claude Code有200k令牌的上下文限制,需保持会话专注,并善用`/compact`和`/transfer-context`命令管理容量,上下文使用率达75%时需特别注意 [28] - **规划优先**:在规划上每投入1分钟可节省后续3分钟,应利用工具的规划模式及`/interview-me-planmd`命令让AI深度介入需求梳理 [30] - **实现闭环自动化**:重复性任务应通过命令、智能体或更新配置实现自动化,完成闭环被强调为提升效率的核心 [32] - **行为验证取代代码审查**:开发者需转向验证接口、UI和API行为,对于大型重构,可预先让AI构建全面的接口测试作为安全网 [34] - **系统化调试**:推荐使用专用的`/debug`命令进行系统化调试,遵循“事不过三”原则,必要时可组建“模型委员会”让多个AI模型并行会诊 [36][37][38][39] 领域特定应用策略 - **前端开发**:截图是高效提示的神器,Claude能直接理解,并推荐安装特定最佳实践技能及管理linter规则 [44] - **后端开发**:建议使用ORM作为架构上下文,并准备现实的种子数据以供AI自我验证 [46] - **AI研究**:可配置Claude访问带A100的虚拟机,使其能自主运行实验、分析日志,实现高度自动化 [47] - **进阶应用**:包括使用Ralph管理大型项目、通过脚本实现手机编程、利用各种Hooks、Subagents及MCP(模型上下文协议),以及使用无头模式进行后台代码审查等 [47] 项目配置与持续迭代 - `CLAUDE.md`文件是项目的核心灵魂,应通过`/setup-repo`生成并持续更新,为AI提供明确的目录结构、依赖模式和非标准选择,以获取更精准的代码输出 [49] - 行业变化迅速,但规划的杠杆效应、快速验证能力、实现闭环自动化以及保持深度思考的主动性被视为永恒的成功原则 [49]
Manus和它的“8000万名员工”
虎嗅APP· 2026-01-13 08:49
文章核心观点 - Manus代表的“多智能体系统”标志着人工智能从“只会生成内容”转向“能自主完成任务”的范式转变,是AI应用的“DeepSeek时刻”[6] - Manus模式的核心价值在于:它是拥有超过8000万名“AI员工”的公司,本质是一套“人工智能操作系统”,其技术模式将推动人类文明实现0.5个级别的跃升[7] - 多智能体系统通过分工协作,实现了“1+1>2”的协同效果,使AI从“助手”阶段正式进入“工作者”阶段,商业价值从“提升效率”转变为“替代劳动力”[16][20] - 全球科技巨头与国内大厂均已加速布局多智能体领域,下一场“囚徒困境”式的AI战争即将爆发[29][30][31] - 多智能体系统将引发人类角色的历史性转变,从“操作者”变为“管理者”,并深刻重塑生产力与生产关系[34][37] - 多智能体系统的发展路径已不可逆,其成熟标志着AI进入“替代完整工作流”的新阶段,但伴随的数据主权与系统安全挑战亦不容低估[39][46] Manus模式的核心价值与颠覆性 - Manus创建了超过8000万台独立的云端虚拟机实例,每一台都是一个由AI自主操作的“数字工作单元”,相当于8000多万名功能不同的AI员工[9][10] - 其模式的核心操作者从人变成了AI,支撑这一转变的Manus系统本身就是AI的操作系统——多智能体系统[11] - 该模式意味着人类正迎来“文明级”生产力飞跃,所有数字经济相关劳动岗位均可被AI接管,相当于文明提升0.5个级别;未来若算力充裕,AI员工规模扩展将彻底重构物理世界的所有生产工具[12] - Manus的年度经常性收入在推出不到一年内突破1亿美元,远超大多数SaaS初创公司同期表现,目前还有超过250万人在排队等待试用[20] 多智能体系统的技术突破与优势 - Anthropic的研究显示,在多智能体架构下,Claude Opus处理复杂任务的性能比单个智能体提升了90.2%[14] - 多智能体系统不追求单一的“超级大脑”,而是打造分工明确、协同工作的“智能社会”,其核心优势在于智能体间的协作能力[16][19] - 该系统依赖多项核心技术:虚拟机提供安全隔离的执行环境;池化与编排技术实现高效的资源调度,能将单个任务的token消耗降至行业平均水平的1/3;强大的工程化能力保障了系统的稳定与可扩展性[22][24][26][27] - 在专门评估AI处理现实复杂任务的GAIA基准测试中,Manus在所有三个难度级别均取得最好成绩,分数超过OpenAI的DeepResearch[19] 行业竞争格局与“囚徒困境” - 全球科技巨头均在加速布局多智能体:Meta内部应用提升30%效率;Google公开了开源框架;微软将其集成至企业产品;亚马逊AWS新增相关功能[30] - 国内市场同样活跃:阿里、腾讯、百度、字节跳动等公司均有明确的多智能体技术布局或需求[31] - 本土模型新势力“月之暗面”已完成5亿美元C轮融资,估值达30亿美元,融资主要用途之一是加强多智能体系统研发,目标在一年内实现1亿美元ARR[33] - DeepSeek即将推出对标Anthropic编程能力的新模型,此举有望为中国AI多智能体应用扫清关键技术障碍[33] - 大厂必须跟进的原因在于:多智能体是模型能力的“放大器”;它重新定义了人机交互方式;其平台可能成为新的生态中心,错过将面临被边缘化的风险[32] 对人类角色、生产力与生产关系的重塑 - 人类与AI的关系正从“操作者-工具”转变为“管理者-团队”,编程语言成为AI间协作的“通用语言”[35] - 多智能体能自动化“创造性工作里的执行环节”,短期内不会取代人类的战略判断与价值取向,但会将人类从繁琐执行中解放出来[36] - 这将导致初级、中级创造性工作需求减少,同时高阶创造性工作的价值被放大,推动职业进化而非消失[37] - 生产力的飞跃将带动生产关系调整,企业层级结构将趋于扁平,“智能体团队”本身成为核心生产资料[37] - Manus的定价模式本质是“数字劳动力租赁服务”,例如39美元/月可同时运行2个任务,199美元/月可运行5个任务,使企业能灵活调整“数字员工”规模[38] 多智能体系统的发展路径与未来展望 - 短期(1-2年):垂直领域的多智能体应用将爆发,市场竞争异常激烈[48] - 中期(3-5年):多智能体系统将从“工具”进化为“平台”,成为AI应用的基础设施[48] - 长期(5-10年):人机协作进入“融合”阶段,工作流程深度整合,工作将由人机系统共同完成[48] - 多智能体系统是协作方式革新的又一次里程碑,它让机器具备了基于共同目标、分工协调的有机协作能力[49]
【微科普】从AI工具看AI新浪潮:大模型与智能体如何重塑未来?
搜狐财经· 2025-11-07 21:36
大模型技术 - 大模型是通过海量数据训练而成的深度学习模型,具备参数量大、训练数据大、计算资源大的特点,拥有强大的数据处理和生成能力[1] - 大模型的核心特点包括参数达到千亿级别,以及从互联网海量文本、图片、音频数据中学习规律和知识[4] - 大模型是AI技术的基础底座,能理解自然语言提问、生成文章图片、编写代码和分析数据,为各种智能应用提供认知与生成能力[3] 智能体技术 - 智能体是大规模语言模型驱动的AI系统,能主动理解目标、拆解任务、协调资源以完成复杂需求,不再局限于被动响应指令[5] - 智能体可独立完成复杂任务,例如根据用户指令规划行程,包括查询天气、对比交通、推荐景点、预订酒店等环节[7] - 智能体发展呈现通用与垂直并存的格局,国际市场有OpenAI的AutoGPT等通用智能体,国内市场有百度文心Agent等深耕企业服务与消费场景的产品[7] 行业应用案例 - 微风企财税AI智能体以自研财税大模型为技术内核,采用通用能力融合与场景化精调的架构设计,整合海量结构化财税政策库与行业知识图谱[9] - 该智能体可实现快速采集、处理分析企业经营数据,生成税务风险检测、企业信用评估、企业经营参谋等专业级分析报告[9] - 技术推动财税服务从人力密集型向AI参谋型转变,解决传统通用模型在财税领域政策解读滞后和风险识别偏差的痛点[9] 技术协同与行业前景 - 大模型与智能体的关系如同大脑与身体的配合,大模型提供认知能力,智能体赋予行动能力,共同推动AI从新奇工具向实用助手转变[10] - 越来越多的AI产品开始融入智能体功能,未来应用可能包括周报撰写、商业计划书制定等,使AI成为日常生活的得力帮手[10] - 全球主流AI大模型分为国际与国内两大阵营,国际模型包括OpenAI的GPT-5、Google的Gemini 2.0等,国内模型涵盖百度文心一言5.0、阿里通义千问3.0等,这些模型在多模态、长文本处理及行业应用上持续突破[3]
AI Agents与Agentic AI的范式之争?
自动驾驶之心· 2025-09-13 00:03
AI智能体发展演进 - ChatGPT于2022年11月发布彻底改写AI发展轨迹 AI Agents与Agentic AI搜索热度自2022年底起持续飙升 [2][4] - 早期智能体如20世纪70年代MYCIN系统依赖符号推理和预设规则 缺乏学习能力和自主适应性 [10] - 多智能体系统MAS与BDI架构在1999年后发展 智能体被定义为具备自主性 感知力与通信能力的实体 但仍受预编程限制 [11] - 2023年AutoGPT BabyAGI等框架标志AI Agents落地 结合LLM与外部工具自主完成多步骤任务 [12] - 2023年底CrewAI MetaGPT系统推动进入Agentic AI阶段 多专业智能体协同分工 [12] - 谷歌2025年提出Agent-to-AgentA2A协议 制定五大核心原则 包括发挥智能体能力 保障交互安全 支持长期任务等 [12] AI Agents核心定义与特征 - AI Agents是由LLM和LIM驱动的模块化系统 用于特定任务自动化 填补生成式AI只会说不会做的空白 [13] - 具备三大核心特征 自主性无需持续人工干预 任务特异性聚焦单一明确领域 反应性能响应动态环境变化 [16][17] - 技术基石为LLM与LIM双引擎驱动 LLM承担推理与决策中枢角色 LIM延伸视觉感知能力 [21] - 工具集成解决LLM静态知识和幻觉问题 过程分为调用-结果整合两步 ReAct框架实现推理与行动交替 [19] - Anthropic的Computer Use项目让Claude模型操作电脑 通过目标-行动-观察循环完成任务 [18] - AutoGPT处理产品市场分析时依次调用网页搜索 Excel 报告生成工具 GPT-Engineer自动生成代码并测试运行 [20] Agentic AI系统级突破 - Agentic AI是多智能体协作革命 核心在于通过多智能体协作解决复杂任务 实现从孤立执行到协同决策的范式转变 [24][27] - 与AI Agents的本质区别在于引入系统级智能 具备动态任务分解 多智能体分工 协同与适应三大能力 [33] - 架构依赖协调层与共享记忆双支柱 协调层由元智能体担任 共享记忆分为情景记忆 语义记忆和向量记忆 [36] - 多智能体科研助手如AutoGen框架自动分配检索 总结 整合 写作 引用智能体协作撰写综述 [37] - 智能机器人协调在果园采摘场景中 包含无人机测绘 采摘机器人 运输机器人和路径规划智能体 [37] - 医疗决策支持在ICU场景中 由监测 病史 治疗和协调智能体构成 减少医生认知负担和误判风险 [38] 应用场景对比 - AI Agents适用于客户服务聊天机器人 虚拟助手 自动化工作流程等单一明确任务 [28][30] - Agentic AI适用于供应链管理 业务流程优化 虚拟项目经理等复杂多步骤任务 [28][30] - AI Agents在企业场景中应用于客户支持 电子邮件筛选 个性化内容推荐 自主日程助手等模块化任务 [41] - Agentic AI在科学 农业 医疗 信息技术安全等领域实现可扩展自主化任务协同 如自动化基金申请 果园采摘 ICU临床决策 网络安全事件响应 [43] 技术挑战与解决方案 - AI Agents面临因果推理缺失 LLM固有缺陷幻觉 知识滞后 提示敏感性 长期规划能力弱等痛点 [50] - Agentic AI新增误差传递 协调瓶颈 涌现行为不可预测 可解释性差等挑战 [50] - 十大核心解决方案包括检索增强生成RAG ReAct框架 因果建模 共享记忆架构 元智能体协调 工具验证机制 程序式提示工程 反思机制 监控与审计pipeline 治理架构 [49][52][53] 未来发展路线 - AI Agents进化重点包括提升主动推理能力 深化工具集成 强化因果推理与持续学习 [57] - Agentic AI突破方向包括规模化多智能体协作 领域定制化 伦理治理 [57] - 颠覆性探索如Absolute ZeroAZR框架实现零数据学习 智能体自主生成任务并验证优化 [57] - 终极方向是从自动化工具进化为人类协同伙伴 需突破因果推理深度化 可解释性透明化 伦理安全体系化三大瓶颈 [58][59]
AI Agents与Agentic AI 的范式之争?
自动驾驶之心· 2025-09-06 00:03
AI智能体技术演进历程 - ChatGPT于2022年11月发布彻底改写AI发展轨迹 引发AI Agents和Agentic AI搜索热度飙升[2][4] - 早期专家系统如MYCIN(70年代)依赖符号推理和预设规则 缺乏学习能力和环境适应性[10] - 多智能体系统(MAS)和BDI架构(1999年)实现分布式问题解决 但仍受预编程限制[11] - 2023年AutoGPT等框架标志AI Agents落地 结合LLM与外部工具实现多步骤任务自主执行[12] - 2023年底CrewAI等系统推动进入Agentic AI阶段 多专业智能体协同分解复杂目标[12] - 谷歌2025年推出A2A协议 制定五大核心原则解决智能体互操作问题[12] AI Agents核心技术架构 - 定义为LLM和LIM驱动的模块化系统 填补生成式AI"只会说不会做"的空白[13] - 具备三大核心特征:自主性(无需人工干预) 任务特异性(专注单一领域) 反应性(适应动态变化)[16][17] - LLM作为推理决策中枢 承担目标解析 步骤分解和工具调用协调功能[21] - LIM扩展视觉感知能力 例如果园巡检AI实时识别病果和断枝并触发警报[21] - 工具集成通过"调用-结果整合"流程解决LLM知识滞后和幻觉问题[19] - ReAct框架实现推理与行动交替进行 例如ChatGPT网页搜索先判断知识缺口再调用工具[19] - Anthropic的"Computer Use"项目实现目标-行动-观察循环 控制鼠标键盘完成软件测试等任务[18] Agentic AI系统级创新 - 实现从孤立执行到协同决策的范式转变 核心在于多智能体协作解决复杂任务[24][27] - 与AI Agents关键差异体现在:广泛自主性 复杂任务协调 多智能体信息共享和跨环境学习能力[28] - 智能家居案例展示系统级智能:天气预测 能源管理和安防智能体协同实现全局目标[29] - 架构依赖两大支柱:协调层(元智能体负责任务分配和冲突解决) 共享记忆(存储任务进度和上下文)[33][36] - 动态任务分解将高级目标拆分为子任务 分配给专业智能体避免效率低下[33] - 科研助手AutoGen框架实现多智能体分工:检索 总结 整合 写作和引用智能体协同撰写综述[37] - 医疗决策支持系统集成监测 病史 治疗和协调智能体 降低误判风险并减少医生认知负担[38] 应用场景与典型案例 - AI Agents适用于客户服务 邮件筛选 内容推荐和日程管理等标准化任务[41] - Agentic AI在科研 农业 医疗和网络安全等复杂动态环境中展现优势[43] - 果园采摘场景实现多机器人协同:无人机测绘 采摘机器人 运输机器人和路径规划智能体联动[37][43] - 自动化基金申请书撰写通过多智能体协同完成文献分析 合规匹配和格式规范[43] - 企业网络安全事件响应由智能体分别处理威胁分类 合规分析和缓解方案制定[43] - ICU临床决策支持系统同步执行诊断 治疗方案制定和EHR分析 提升医疗安全性[43] 技术挑战与解决方案 - AI Agents存在因果推理缺失 LLM幻觉 知识滞后 提示敏感性和长期规划弱等痛点[50] - Agentic AI新增误差传递 协调瓶颈 涌现行为不可预测和可解释性差等挑战[50] - 十大解决方案包括:RAG提供实时外部知识 ReAct框架强化推理行动循环 因果建模区分相关性[49][52][53] - 共享记忆架构解决信息同步 元智能体协调避免混乱 工具验证机制自动修正错误[53] - 反思机制赋予自我批判能力 监控审计pipeline记录决策日志 治理架构防范安全风险[53] 未来发展方向 - AI Agents进化重点:提升主动推理能力 深化工具集成(结合机器人硬件) 强化因果推理[57] - Agentic AI突破方向:规模化多智能体协作(支持上千智能体) 领域定制化 伦理治理[57] - Absolute Zero框架探索零数据学习 实现自我驱动式的科研假设生成和验证[57] - 终极目标是从自动化工具进化为人类协同伙伴 适应高风险领域共同决策[58] - 需突破因果推理深度化 可解释性透明化和伦理安全体系化三大瓶颈[59]
生成式 AI 的发展方向,应当是 Chat 还是 Agent?
自动驾驶之心· 2025-07-11 19:23
Chat与Agent的区别 - Chat是主要由"大脑和嘴"构成的智能体,专注于信息处理和语言交流,如ChatGPT这样的系统,能理解查询并给出连贯回答但不直接执行任务 [1] - Agent是具有"手、脚"的智能体,能进行思考、决策并执行具体任务 [2] - Chat强调"说",Agent强调"做" [3] 技术发展趋势 - 人类对"让机器替人干活"的需求持续存在,OpenAI通过plugin、Function Calling、Assistant API等动作推动LLM从纯对话向任务执行扩展 [4] - 智能音箱发展路径类似:从基础语音功能(如播放音乐)逐步扩展到支付互通、智能家居控制、儿童教育等场景,成为智能生态核心 [4][5] - AI+RPA技术推动智能客服向数字员工进化,体现AI从单一对话到"说做结合"的融合趋势 [5] - 未来生成式AI将融合Chat和Agent特点,形成兼具高质量对话与复杂任务执行能力的自动化系统 [6] AI Agent的技术变革 - 颠覆传统软件开发模式:从预先定义逻辑转向由LLM自主支配运行,实现运行时学习与调优 [7] - 核心模块包括Memory(记忆)、Tools(外部工具)、Planning(计划)和Action(行动) [7] - 当前学习路径分为OpenAI技术路线和开源技术路线,建议技术人员选择一条深入实践 [9] 典型AI Agent项目案例 - AutoGPT:可拆解用户目标为子任务,通过搜索、脚本执行等方式自主完成任务 [11][12] - JARVIS:采用"模型选择"机制,调用Huggingface专家模型处理多模态任务 [13][15] - MetaGPT:模拟软件公司结构,分配产品经理、工程师等角色协作完成编码任务 [16] 开发者生态与机会 - 工具/平台成熟为个体开发者提供新舞台,使AI原生应用开发门槛降低 [16] - 自动驾驶领域已形成近4000人社区,覆盖300+企业与科研机构,涉及30+技术栈(如BEV感知、SLAM、轨迹预测等) [19][21]
红杉AI峰会六大关键议题解读(3):智能体觉醒,AI从任务执行者迈向经济行为主体
海通国际证券· 2025-05-13 21:44
报告行业投资评级 未提及 报告的核心观点 - 2025年红杉AI峰会上“智能体经济”成高频话题,AI智能体正从单一任务执行者演进为经济行为主体,开启人机共生新阶段 [3][9] - AI正从功能工具演化为经济参与者,智能体获“身份”和“意图表达”能力,成可参与经济活动的“半自主个体”,摆脱人类操作控制台 [4][10] - AI智能体核心特征是具备决策、执行和协作三重能力,协作模式超传统软件模块分工,接近人类项目小组工作流程 [5][11] - 智能体催生新工作分配逻辑,推动“AI雇佣AI”经济生态形成,未来竞争力在于管理智能体网络而非人力配置 [6][12] - 智能体经济加速AI商业应用落地,重构企业内部生产结构,企业借助AI构建“任务执行网络”,组织结构向“任务制”过渡 [6][13] 根据相关目录分别进行总结 事件 - 2025年红杉AI峰会上“智能体经济”成高频讨论话题,AI智能体从单一任务执行者演进为经济行为主体,开启人机共生新阶段 [3][9] 点评 - AI从功能工具演化为经济参与者,过去“AI智能体”多为执行单一任务插件,如今智能体获“身份”和“意图表达”能力,成“半自主个体”,可自行规划路径、决策、追踪结果并协作,摆脱人类操作控制台 [4][10] - AI智能体核心特征是决策、执行和协作三重能力,以Claude Code或OpenAI的AutoGPT等系统为例,能理解需求、拆解目标等,不同Agent可互为上下游,协作模式接近人类项目小组工作流程 [5][11] - 智能体催生新工作分配逻辑,推动“AI雇佣AI”经济生态形成,未来开发场景中AI可组成“虚拟团队”,分布式智能架构提升效率,挑战现有流程,竞争力在于管理智能体网络 [6][12] - 智能体经济加速AI商业应用落地,重构企业内部生产结构,企业借助AI构建“任务执行网络”,智能体自动识别瓶颈等,提升效率,助组织结构向“任务制”过渡,AI参与企业资源协调等 [6][13]
海内外大厂拥抱MCP,一场争夺Agent生态话语权的预备役
第一财经· 2025-05-09 14:46
行业动态与趋势 - 人工智能行业存在隐性"鄙视链",模型公司、Agent公司、提示词公司之间存在层级差异,但随着MCP协议普及,行业更注重产品效果而非技术层级 [1] - 行业从早期模型刷榜阶段转向解决实际问题,具备规划执行功能的Agent成为重点,MCP协议成为生态构建关键 [1] - 全球AI Agent市场规模预计从2024年52.9亿美元增长至2035年2168亿美元,复合年增长率40.15% [3] MCP协议发展与应用 - Anthropic公司提出MCP协议,旨在建立大模型与外部工具的统一接口,被形容为"AI万能插头" [4] - OpenAI宣布Agent SDK支持MCP服务协议,将其提升至类似HTTP的基础设施地位,Cursor、Winsurf等平台相继接入 [5] - 国内厂商百度、腾讯、阿里、字节跳动密集布局MCP协议,分别构建"千帆平台"、"知识引擎"、"支付MCP Server"、"扣子空间"等应用场景 [6] - 谷歌推出A2A协议与MCP形成竞争,两者分别侧重工具调用标准和多Agent协作,未来可能存在融合可能性 [7] 市场需求与行业共识 - 开发者面临多工具调用和模型协同的复杂问题,MCP协议通过统一标准降低适配成本,市场需求显著 [8] - 行业类比互联网早期HTML和HTTP协议,认为统一开放的MCP协议将加速AI Agent生态发展 [9] - 埃森哲全球副总裁俞毅指出,MCP协议的生命力取决于开源特性和市场需求,目前行业仍处早期演进阶段 [10] Agent技术挑战与前景 - Agent需解决意图识别等核心问题,例如"讨价还价"场景的实现将推动商业化应用 [11] - 涂鸦智能CEO王学集认为AI Agent可降低用户使用门槛,未来可能通过对话框集成主流Agent服务 [11] - 海外市场侧重MCP应用构建,国内聚焦流量入口争夺,但最终需回归解决实际问题的应用场景 [12]