Workflow
端到端自动驾驶
icon
搜索文档
自动驾驶现在关注哪些技术方向?应该如何入门?
自动驾驶之心· 2025-08-15 07:33
社区定位与愿景 - 致力于推动自动驾驶与AI行业发展,成为企业与高校间的沟通桥梁 [1] - 愿景是让AI与自动驾驶技术普及至有需求的学生群体 [1] - 已梳理40+技术路线,覆盖行业应用咨询、VLA基准测试、综述及学习路线等方向 [1] - 邀请数十位来自产业界与学术界的一线专家担任嘉宾,提供答疑服务 [1] 核心资源与内容体系 - 提供学术前沿内容、工业界圆桌讨论、开源代码方案及求职信息 [3] - 汇总40+开源项目、60+自动驾驶数据集及主流仿真平台 [13] - 技术学习路线涵盖感知、仿真、规划控制、端到端、3DGS原理等方向 [13] - 整理国内外高校自动驾驶团队及企业名单,包括上海交大、CMU、蔚小理、华为等机构 [13][21][23] 技术专题覆盖 - **端到端自动驾驶**:涵盖综述、里程碑方法、纯视觉/多模态方案、世界模型结合等细分方向 [31][20] - **3DGS与NeRF**:聚焦算法原理、场景重建、闭环仿真及感知应用 [33] - **世界模型**:汇总技术前沿与工业落地应用 [35] - **视觉语言模型(VLM)**:包括最新综述、开源数据集及量产方案DriveVLM [37] - **BEV感知**:梳理纯视觉/多模态方案、多任务学习及工程部署 [44] - **3D目标检测**:覆盖环视、range-view、voxel-based及多模态方法 [46] 行业活动与互动 - 举办超100场专业直播,嘉宾来自清华大学、上海人工智能实验室等机构,分享VLA、3D检测等前沿工作 [76] - 成员可自由提问职业规划、研究方向等问题,获得行业大佬解答 [77] - 社区成员来自国内外顶尖高校与企业,形成技术交流与求职对接平台 [13][18] 求职与职业发展支持 - 提供自动驾驶岗位推荐与企业对接服务 [18] - 汇总主机厂、供应商(如理想、Momenta)的offer选择建议,涵盖薪资、技术氛围等维度 [80] - 分析行业趋势,如2025年VLA技术热点及量产挑战 [39][80] 学习资源整合 - 整理自动驾驶与CV领域经典书籍,涵盖数学基础、深度学习、运动规划等主题 [25] - 开源数据集分类包括通用CV数据集、感知数据集及多模态大模型专用数据集 [29] - 实战方向覆盖模型压缩、部署优化、CUDA编程等工程化内容 [61][63]
正式开课!端到端与VLA自动驾驶小班课,优惠今日截止~
自动驾驶之心· 2025-08-14 07:33
行业技术发展 - VLA(Vision-Language-Action)被视为自动驾驶量产的新里程碑,技术从E2E+VLM演进至VLA,引发行业广泛关注并吸引传统规控、感知等领域人才转型需求[1] - 端到端自动驾驶技术呈现多方向分化,涵盖多模态大模型、BEV感知、强化学习、扩散模型等关键技术栈,但跨领域学习门槛高且知识碎片化[11] - 技术迭代加速导致早期工业级端到端方案已不适应当前环境,VLA成为学术界与工业界共同发力的前沿方向,被称作"端到端自动驾驶的皇冠"[19] 课程体系设计 - 课程分五章递进式教学:从端到端发展史(第一章)、核心技术背景(第二章)到二段式(第三章)与一段式端到端及VLA(第四章),最终以RLHF微调实战收尾(第五章)[17][18][19][21] - 第二章聚焦未来两年高频技术关键词:大语言模型、BEV感知、扩散模型理论、强化学习与RLHF等[17][20] - 第四章深度解析四大一段式端到端子领域:基于感知(UniAD/VAD)、世界模型(Drive-OccWorld/OccLLaMA)、扩散模型(DiffusionDrive/DiffE2E)及VLA(ORION/OpenDriveVLA)[19] 职业发展价值 - VLA相关岗位薪资竞争力显著:VLA算法专家年薪达60-105万(40-70K*15薪),顶尖博士人才年薪144-192万(90-120K*16薪),实习生日薪220-400元[8] - 课程目标使学员达到1年经验算法工程师水平,掌握复现扩散模型/VLA框架能力,覆盖实习/校招/社招全场景需求[28] - 技术转型路径明确:传统算法岗可通过课程横向提升技能或转向VLA大模型算法工程师核心岗位[6][7] 教学特色 - 采用Just-in-Time Learning理念,通过案例教学快速构建技术框架,解决论文碎片化难题[12][13] - 配套三大实战环节:Diffusion Planner(扩散模型)、ORION(VLA)及RLHF微调大作业,实现理论到工业级应用的闭环[19][21] - 课程由TOP主机厂算法专家设计,整合CVPR'25、AAAI'25等最新研究成果及量产经验,8月15日开课分阶段解锁内容[22][26] 技术深度覆盖 - BEV感知模块详解:涵盖3D检测、车道线识别、OCC及轨迹预测规划等自动驾驶核心感知任务[20] - 多模态技术栈:从CLIP/LLAVA视觉语言基础到VLA完整技术链路,结合GRPO等前沿强化学习方法[19][20] - 扩散模型应用:重点解析多模轨迹预测技术,包括Diffusion Planner等工业落地方案[19]
全面超越DiffusionDrive!中科大GMF-Drive:全球首个Mamba端到端SOTA方案
自动驾驶之心· 2025-08-14 07:33
端到端自动驾驶框架GMF-Drive - 突破Transformer瓶颈,提出门控Mamba融合+空间感知BEV的端到端自动驾驶框架,通过几何增强柱状表示和空间感知状态空间模型实现高效多模态融合 [7][13][16] - 包含三个核心模块:数据预处理模块(14维柱状表示保留3D几何信息)、感知模块(GM-Fusion实现线性复杂度空间建模)、轨迹规划模块(截断扩散策略生成轨迹) [13][19][22] - 在NAVSIM基准测试中PDMS得分88.9,较DiffusionDrive提升0.8分,关键子指标DAC和EP分别达到97.3和83.3 [32][33] 多模态融合技术演进 - 当前主流方法采用TransFuser风格架构,直接拼接图像与LiDAR特征并通过自注意力处理,存在信息损失和缺乏空间感知两大缺陷 [3][5][6] - 多模态融合方法分为三类:早期融合(原始数据层)、后期融合(决策层)、中期融合(特征层),当前以Transformer为核心的中期融合为主流但计算量大 [10][11][14] - 行业趋势从早期CNN方法演进到多模态系统,关键里程碑包括BEV表示(TransFuser)、多任务整合(UniAD)、向量化表示(VAD)和稀疏表示(SparseDrive) [8][11] 技术创新点 - 几何增强柱状表示:14维特征包含点特征池化结果和统计特征(反射强度均值方差、PCA几何描述符),保留传统方法丢失的3D几何信息 [19][20] - GM-Fusion模块:整合门控通道注意力(特征对齐)、BEV-SSM(方向感知+双扫描模式空间建模)、分层可变形跨注意力(多尺度特征查询) [22][24][25] - 空间感知机制:自车中心极坐标编码实现维度交错,双扫描模式(光栅扫描+Z字扫描)结合距离衰减机制优化空间依赖建模 [24][25][26][27] 性能验证 - 定量比较:在相同ResNet-34主干和传感器输入条件下,PDMS得分88.9超越所有对比方法,DAC指标97.3显示精细空间特征提升场景理解能力 [32][33] - 消融实验:完整系统组件使PDMS提升0.75分,其中14维柱状表示贡献0.24分,GM-Fusion模块贡献0.74分,验证数据表示与架构设计的协同重要性 [37][38][39] - 融合架构对比:HCA+BEV-SSM配置PDMS达88.69,证明针对BEV优化的扫描模式与空间先验比通用序列模型(C-EffiMamba)更有效 [41][42]
双非硕多传感融合方向,技术不精算法岗学历受限,求学习建议。。。
自动驾驶之心· 2025-08-13 21:06
社区定位与价值主张 - 专注于为自动驾驶领域学生和从业者提供技术交流平台 特别关注双非院校学生在算法方向的就业困难问题 [2][3] - 通过知识星球社区构建产业、学术、求职、问答交流的闭环生态 已整合40+技术路线和数十位行业嘉宾资源 [6] - 社区成员覆盖国内外顶尖高校(上海交大、北京大学、CMU等)和头部企业(蔚小理、地平线、华为等)形成高端技术聚集地 [17] 技术资源体系 - 系统化整理近40+开源项目、60+数据集及主流仿真平台 涵盖感知、规划控制、仿真等全栈技术方向 [17] - 详细梳理前沿技术领域包括端到端自动驾驶(覆盖综述、里程碑方法、多模态方案等10个子类) [24][35] - 提供VLA(视觉语言模型)全链路资源 包含开源数据集、思维链推理及量产方案DriveVLM等关键技术 [41][43] - 整合3DGS与NeRF技术 涵盖算法原理、自动驾驶场景重建与闭环仿真等应用 [37] 实战与就业支持 - 设计100问系列实战专题 包括TensorRT模型部署、毫米波雷达融合、规划控制等7大方向工程化问题 [8] - 定期组织行业大佬直播分享 已完成超100场专业技术直播 涵盖VLA、3D检测、扩散模型等热点话题 [80] - 提供企业岗位对接服务 覆盖蔚小理、华为、大疆等头部公司 并针对应届生offer选择提供详细对比分析 [84] 细分技术模块 - BEV感知领域整合纯视觉、多模态方案及工程部署资源 形成量产方案技术基石 [48] - 多传感器融合方向涵盖强融合/弱融合/后融合方案 以及Lidar/Radar/Camera具体实施路线 [8][52] - 规划控制模块包含基于搜索/采样/数值优化的算法 以及横纵解耦与联合规划框架 [17] - 仿真技术汇总Carla、Apollo、Autoware等平台 并扩展闭环仿真与传感器仿真能力 [8][76]
传统感知逐渐被嫌弃,VLA已经上车了?!
自动驾驶之心· 2025-08-13 14:04
理想i8与VLA司机大模型 - 理想i8成为首款搭载VLA司机大模型的理想车型 核心能力包括空间理解 思维能力 沟通与记忆能力以及行为能力 [2] - VLA能力提升体现在三方面 更懂语义(多模态输入) 更擅长推理(思维链) 更接近人类驾驶直觉 [2] - 行驶中可响应自然语言指令如"靠边停一下""往前走50米" 并能根据记忆设定路段速度 主动规避障碍 [5] VLA技术发展现状 - VLA是自动驾驶量产新里程碑 技术从E2E+VLM递进发展 行业多家公司投入研发 [7] - 技术栈涉及大语言模型 BEV感知 扩散模型 强化学习等多领域 转行门槛较高 [19] - 当前招聘需求旺盛 VLA算法专家岗位薪资达40-70K 量化部署工程师40-60K [15] 端到端自动驾驶课程体系 课程内容架构 - 第一章概述端到端发展历史 从模块化到一段式 二段式及VLA范式的演进 [26] - 第二章重点讲解大语言模型 BEV感知 扩散模型等背景知识 覆盖未来两年高频技术关键词 [26][33] - 第三章解析二段式端到端 包括PLUTO CARPLANNER(CVPR'25)等经典算法 [27] - 第四章深度剖析一段式端到端子领域 涵盖UniAD 世界模型 扩散模型及VLA前沿方案 [28][30][32][35] 教学特色 - 采用Just-in-Time Learning理念 通过案例快速掌握核心技术栈 [21] - 配套RLHF微调大作业 可迁移至VLA算法 提供ORION等实战项目 [35][37] - 课程目标使学员达到1年经验算法工程师水平 掌握BEV感知 多模态大模型等关键技术 [42] 行业技术趋势 - 世界模型应用广泛 涵盖场景生成 端到端驾驶及闭环仿真 成为近年热门方向 [30] - 扩散模型与VLM结合实现VLA 多模轨迹预测提升环境适应性 多家公司尝试落地 [32] - VLA技术上限高但难度大 小米ORION 慕尼黑工大OpenDriveVLA等方案推动量产进程 [35]
闭环碰撞率爆降50%!DistillDrive:异构多模态蒸馏端到端新方案
自动驾驶之心· 2025-08-12 07:33
端到端自动驾驶技术发展 - 端到端自动驾驶近年来发展迅速,对工业界和学术界均产生深远影响,但现有工作过度关注自车状态作为唯一学习目标,缺乏面向规划的理解能力 [2] - DistillDrive框架通过异构蒸馏显著降低自动驾驶碰撞率50%,闭环性能提升3个百分点 [2] - 与感知分离的规划模型相比,端到端模型直接从传感器输入学习到最终规划决策,减少级联误差但闭环表现较差 [3] DistillDrive技术创新 - 采用多模态解耦规划模型作为教师模型,通过知识蒸馏监督端到端模型的运动引导实例交互 [6] - 引入强化学习优化状态到决策的映射关系,利用生成式建模构建面向规划的实例 [6] - 主要贡献包括:多模态实例监督蒸馏架构、基于强化学习的状态优化、生成模型实现的分布级交互 [7] 技术实现细节 - 教师模型包含智能体编码器、场景编码器、规划解码器、预测头和状态优化模块 [20] - 学生模型采用稀疏场景表示和生成模型中的规划导向交互,通过KL散度监督分布 [25][27] - 知识蒸馏架构包含编码器实例蒸馏、解码器实例蒸馏和运动属性蒸馏三阶段 [30] 实验验证结果 - 在nuScenes数据集上碰撞率降低50%,L2误差减少10%,闭环性能提升3个百分点 [37] - NAVSIM数据集上PDMS指标比Transfuser高出2.5%,DAC和EP指标显著提升 [38] - 感知性能与SparseDrive相当,但在IDS等指标上有所提升 [39] 行业技术发展 - 端到端自动驾驶技术快速发展,UniAD利用注意力机制集成检测跟踪建图,VAD通过向量化表示平衡准确性与性能 [9] - 知识蒸馏在自动驾驶规划领域应用广泛,Roach、PlanKD和Hydra-MDP等采用不同蒸馏策略 [11] - 强化学习在CARLA等仿真环境中应用成熟,结合模仿学习可防止分布外值过度估计 [14][16] 未来发展方向 - 计划将世界模型与语言模型结合提升规划性能 [55] - 采用更有效的强化学习方法理解场景语义几何空间与决策规划空间关系 [55] - 行业正形成大模型、VLA、端到端、数据闭环等技术交流社区,涵盖30+技术方向 [58][60]
本来决定去具身,现在有点犹豫了。。。
自动驾驶之心· 2025-08-11 20:17
具身智能行业现状 - 具身智能是2025年最热门方向之一 但当前仍处于技术探索阶段 尚未达到生产力转化阶段[1] - 行业经历从沉寂到疯狂再到冷静的周期 初创公司融资活跃但技术成熟度有限[3] - 头部企业对具身智能人才需求集中在端到端、大模型、VLA、强化学习等前沿方向[3] 自动驾驶技术发展趋势 - 主流技术路线正从无图方案向端到端架构迁移 技术栈迭代周期为1-2年[3] - 行业关注重点包括LV融合、BEV感知、3DGS、世界模型等方向[3][20][26] - 传统机器人技术仍是产品主线 但前沿算法研究投入持续加大[3] 自动驾驶人才需求 - 算法岗竞争激烈 学历门槛较高 更倾向招收掌握端到端、大模型等前沿技术的人才[3] - 机器人/具身智能领域存在SLAM、ROS等技术优化与集成类岗位机会[3] - 初创公司提供全面技术培养机会 但工作强度较大[3] 自动驾驶技术社区资源 - 社区覆盖40+技术路线 包含VLA benchmark、综述、学习路线等系统化资源[6][20] - 汇集国内外顶尖高校实验室及头部企业资源 形成产学研闭环[19][20][27][29] - 提供60+数据集、40+开源项目及主流仿真平台资源[20][33][35] 前沿技术研究热点 - 端到端自动驾驶技术涵盖量产方案、VLA算法、世界模型结合等方向[26][37] - 3DGS与NeRF技术在场景重建、闭环仿真领域应用广泛[39] - 视觉语言模型(VLM)在预训练数据集、思维链推理等方向快速发展[43] - BEV感知作为量产基石 覆盖纯视觉与多模态方案[50] - 扩散模型应用于数据生成、场景重建等场景[48] 行业活动与交流 - 社区组织超100场专业技术直播 涵盖VLA、世界模型等前沿主题[82] - 建立头部企业内推机制 实现求职与岗位高效匹配[9][18] - 成员可自由提问工作选择、研究方向等实际问题并获得解答[83]
即将开课!端到端与VLA自动驾驶小班课来啦(扩散模型/VLA等)
自动驾驶之心· 2025-08-11 07:32
端到端自动驾驶技术发展 - 端到端自动驾驶分为一段式端到端和二段式端到端两大技术方向,自UniAD获得CVPR Best Paper后引发国内智驾军备竞赛 [2] - 2024年理想汽车宣布E2E+VLM双系统架构量产,技术通过传感器数据直接输出规划或控制信息,避免模块化方法误差累积 [2] - BEV感知打破模块化壁垒,UniAD统一感知和规划任务,推动端到端技术进入新阶段 [2] - 当前技术需掌握多模态大模型、BEV感知、强化学习、视觉Transformer、扩散模型等跨领域知识 [3] 技术课程核心内容 - 课程涵盖二段式端到端(PLUTO)、一段式端到端(UniAD)、基于世界模型(OccWorld)、基于扩散模型(DiffusionDrive)及VLA方向 [7] - 第一章解析端到端发展历史及模块化到端到端的演变,对比一段式、二段式、VLA范式优缺点 [9] - 第二章重点讲解背景知识,包括VLA涉及的大语言模型、扩散模型、强化学习及BEV感知 [9][12] - 第三章聚焦二段式端到端,分析PLUTO、CarPlanner、Plan-R1等经典与前沿工作 [10] - 第四章深入一段式端到端与VLA,覆盖UniAD、OccWorld、DiffusionDrive及ORION等实战案例 [11] 课程特色与目标 - 采用Just-in-Time Learning理念,帮助学员快速掌握核心技术栈并构建领域框架 [4][5] - 结合实战环节完成理论到实践闭环,包括RLHF微调及VLA算法复现 [6][13] - 学员需具备自动驾驶基础、Transformer/BEV感知等知识,课程目标为达到1年算法工程师水平 [18] - 课程进度安排为3个月,分章节解锁内容并配备VIP群答疑 [18] 行业趋势与就业需求 - 端到端自动驾驶成为智能驾驶代表方向,学术界与工业界加速布局VLA等前沿技术 [2][11] - VLA技术因上限高、难度大成为招聘热点,涉及VLM、BEV、扩散模型等多技术融合 [11] - 扩散模型在多模轨迹预测中应用广泛,DiffusionDrive等作品推动工业界落地尝试 [11][12]
自动驾驶二十年,这个自动驾驶黄埔军校一直在精打细磨...
自动驾驶之心· 2025-08-10 00:03
自动驾驶行业发展现状 - 自动驾驶技术自2009年谷歌(Waymo)开启研发热潮以来已发展近二十年,当前处于行业下沉关键期,技术路径从模块化方法演进至端到端/VLA方法 [2] - 行业技术能力持续攀升,但实现真正自动驾驶仍需突破,智能驾驶融入日常出行是长期目标 [2] 技术资源与知识体系 - 社区梳理40+技术路线,覆盖VLA benchmark、综述、学习路线等,缩短行业检索时间 [4] - 汇总60+自动驾驶数据集、40+开源项目及主流仿真平台,包含感知/仿真/规划控制等学习路线 [16] - 技术方向覆盖BEV感知、3D目标检测、多传感器融合、Occupancy Network等28个细分领域 [23][47][49][51][54] - 前沿技术包括扩散模型、世界模型、视觉语言模型(VLM)、端到端自动驾驶等热点方向 [38][40][42][45] 行业生态与人才网络 - 社区成员来自上海交大、清华、CMU等顶尖高校及蔚小理、华为、大疆等头部企业,形成产学研闭环 [16] - 与多家自动驾驶公司建立内推机制,直接对接企业招聘需求 [7] - 提供职业发展咨询,涵盖岗位选择、技术转型等实际问题 [80][83] 技术交流与内容产出 - 每月举办星友线上讨论会,针对共性问题深度探讨 [2] - 累计举办超100场专业直播,邀请清华、上海AI Lab等机构专家分享最新研究成果 [79] - 内容形式包含开源项目分析、数据集解读、量产方案拆解等实战型主题 [30][32][34] 教育培训体系 - 针对小白提供完备入门技术栈和路线图 [9] - 为从业者设计算法进阶课程,涵盖CUDA编程、模型部署等工程化内容 [5][64][66] - 开发"自动驾驶100问"系列,聚焦TensorRT部署、毫米波雷达融合等实战问题 [5]
即将开课!彻底搞懂端到端与VLA全栈技术(一段式/二段式/VLA/扩散模型)
自动驾驶之心· 2025-08-06 07:32
理想i8与VLA技术发布 - 理想i8在品牌十周年之际上市,重点推出辅助驾驶功能升级,并首发VLA(视觉-语言-动作模型)司机大模型,成为首款搭载该技术的理想车型 [2] - VLA将作为全系i8车型标配功能,计划于8月随车辆交付 [2] - VLA技术突破体现在三方面:多模态语义理解(空间/思维/沟通记忆/行为)、思维链推理能力、接近人类驾驶直觉的决策能力 [3] - 具体功能包括:执行自然语言指令(如"靠边停")、记忆路段速度偏好、语音搜索目的地(如"找最近星巴克")、复杂路况风险评估与避障 [6] VLA技术架构与行业影响 - VLA整合端到端与大模型优势,融合视觉空间理解(BEV感知)、语言模型思维推理(含RAG记忆)、多模态输入处理能力 [3] - 技术演进路径:从E2E+VLM到VLA,代表自动驾驶量产新里程碑,引发行业人才转型热潮(传统规控/感知方向从业者转向VLA) [5] - 技术流派分化:一段式(UniAD/OccWorld/DiffusionDrive)与二段式(PLUTO)并行发展,VLA成为大模型时代端到端新方向 [8][23] - 人才市场需求旺盛:VLA算法专家月薪达40-70K(15薪),博士级顶尖人才年薪90-120K(16薪),实习岗位日薪220-400元 [11] 端到端技术发展趋势 - 技术迭代加速:2023年工业级端到端方案已不适应2024年环境,需掌握多模态大模型/BEV感知/强化学习/扩散模型等复合技能 [14] - 学术前沿动态:基于感知的UniAD、基于世界模型的OccWorld、基于扩散模型的DiffusionDrive形成三大技术分支 [23] - VLA成为技术制高点:融合VLM/BEV/扩散模型/强化学习,代表端到端自动驾驶最高难度,小米ORION等开源项目推动工业落地 [25] 技术人才培养体系 - 行业推出《端到端与VLA自动驾驶小班课》,覆盖技术发展史、背景知识(Transformer/BEV/扩散模型/RLHF)、一段式/二段式实现方案 [21][22][24] - 课程设计特点:Just-in-Time快速入门、构建研究框架(论文分类/创新点提取)、RLHF微调实战(ORION案例复现) [16][17][18][26] - 培养目标:3个月达到1年经验算法工程师水平,掌握主流框架复现能力(扩散模型/VLA),适配实习/校招/社招需求 [32]