Workflow
端到端自动驾驶
icon
搜索文档
面试了很多端到端候选人,还是有很多人搞不清楚。。。
自动驾驶之心· 2025-07-20 16:36
端到端自动驾驶技术概述 - 端到端自动驾驶分为一段式端到端和二段式端到端两大技术方向 是当前薪资最高的算法岗位之一 3-5年经验可冲击百万年薪 [2] - 核心优势在于直接从传感器输入到车辆规划/控制信息的直接建模 避免了传统模块化方法的误差累积 BEV感知技术实现了模块间的统一视角 [2] - UniAD模型统一了感知和规划任务 标志着端到端时代的来临 但并非最终解决方案 后续涌现出多种技术流派 [2][4] 主要技术流派 - **二段式端到端**:以PLUTO为代表 专注于用模型实现自车规划 [4] - **一段式端到端**: - 基于感知的方法:以UniAD为代表持续发展 [4] - 基于世界模型的方法:以OccWorld为代表开创新流派 [4] - 基于扩散模型的方法:以DiffusionDrive为代表实现多模轨迹预测 [4] - **VLA方向**:大模型时代下的端到端新方向 结合视觉语言模型技术 [4][22] 行业应用与人才需求 - VLA/VLM大模型算法专家岗位薪资达40-70K*15薪 博士应届生可达90-120K*16薪 [9] - 技术岗位覆盖感知算法、模型量化部署等多方向 实习岗位日薪220-400元 [9] - 主机厂已开展端到端算法预研和量产交付 形成完整技术落地闭环 [25] 技术发展挑战 - 需同时掌握多模态大模型、BEV感知、强化学习、扩散模型等跨领域知识 [14] - 论文数量繁多且知识碎片化 缺乏系统性学习框架和实战指导 [14] - 高质量文档稀缺 提高了技术入门门槛 [14] 课程体系设计 - **知识框架**:覆盖BEV感知、扩散模型理论、强化学习与RLHF等核心技术栈 [6][23] - **案例研究**: - 二段式端到端解析PLUTO、CarPlanner等经典算法 [21] - 一段式端到端深入UniAD、OccLLaMA等前沿工作 [22] - **实战环节**: - 扩散模型轨迹预测实战Diffusion Planner [22] - VLA方向实战小米ORION开源框架 [22] - 大作业RLHF微调实现技术迁移应用 [24] 技术发展趋势 - 世界模型应用扩展至场景生成、闭环仿真等多场景 成为近年研究热点 [22] - 扩散模型与VLM结合推动多模轨迹预测技术落地 [22] - VLA被视为端到端自动驾驶的"皇冠" 工业界招聘需求旺盛 [22]
港中文最新!ReAL-AD:迈向类人推理的端到端自动驾驶,轨迹性能提升30%(ICCV'25)
自动驾驶之心· 2025-07-20 16:36
核心观点 - 提出ReAL-AD框架,通过三层人类认知模型(驾驶策略、驾驶决策、驾驶操作)实现类人推理的端到端自动驾驶 [2][8] - 集成视觉-语言模型(VLMs)增强环境感知和结构化推理能力,规划准确性和安全性提升超过30% [2][11][34] - 采用层次化轨迹解码器实现从粗到细的轨迹规划,L2误差减少33%,碰撞率降低32% [9][34] 技术架构 - **策略推理注入器**:解析VLM生成的交通情境见解,制定高层次驾驶策略 [8][17] - **驾驶推理整合器**:将战略意图细化为可解释的驾驶选择(如变道、超车、速度调整) [8][20] - **层次化轨迹解码器**:两阶段变分解码器,先建立粗略运动模式再细化轨迹 [24][26] 实验验证 - **数据集**:NuScenes(1,000个20秒场景)和Bench2Drive(13,638片段/200万帧) [30] - **开环指标**:平均L2误差0.48米(NuScenes)、0.84米(Bench2Drive),碰撞率0.15%/0.12% [34] - **闭环指标**:驾驶评分提升至41.17,成功率11.36%,优于基线模型UniAD/VAD [35] 行业对比 - **传统方法局限**:依赖固定稀疏轨迹监督,无法模拟人类分层决策过程 [3][7] - **现有VLM应用**:多作为辅助模块提供语义线索,缺乏与决策层次的有机整合 [5][12] - **创新点**:首次将VLM推理嵌入三层决策架构,实现战略-战术-操作的全链路协同 [8][11] 性能优化 - **消融实验**:移除战略推理注入器导致L2误差增加12%,碰撞率上升19% [36] - **解码器设计**:两层结构比单层L2误差降低0.14米,三层会引入过拟合 [39] - **损失函数**:相似性损失有效弥合文本特征与轨迹预测特征的模态差距 [38]
死磕技术的自动驾驶黄埔军校,三周年了。。。
自动驾驶之心· 2025-07-19 11:04
自动驾驶技术发展现状 - 自动驾驶技术正处于从辅助驾驶(L2/L3)向高阶无人驾驶(L4/L5)跨越的关键阶段 [2] - 2025年自动驾驶、具身智能、大模型Agent三大赛道是AI竞争高地 [2] - 端到端自动驾驶成为主流学习方向,建议从BEV感知开始逐步深入 [2] 自动驾驶技术社区 - 自动驾驶之心知识星球是国内最大的自动驾驶学习社区,拥有近4000名成员 [2] - 社区汇聚100+行业专家,提供30+技术方向学习路线 [2] - 覆盖端到端自动驾驶、世界模型、视觉大语言模型等前沿方向 [2][4] 视觉大语言模型研究 - CVPR 2024发布多篇视觉语言模型预训练论文,涉及效率提升和公平性优化 [11] - 视觉语言模型评估涵盖图像分类、文本检索、行为识别等任务 [16][17][18] - 大规模预训练数据集包括LAION5B(50亿图文对)、WebLI(120亿图文对) [15] 自动驾驶数据集 - 主流自动驾驶数据集包括nuScenes、Waymo Open Dataset、BDD100K等 [21] - 语言增强数据集支持自然语言导航、视觉问答等任务 [22] - 图像分类评估数据集包含ImageNet-1k(128万训练图)、CIFAR-100等 [16] 技术应用领域 - 智能交通领域应用包括语言引导车辆检索、视觉问答系统 [23] - 自动驾驶感知方向研究语言引导3D检测、开放词汇分割等任务 [24] - 决策控制领域探索大语言模型在轨迹预测和运动规划中的应用 [25][26] 世界模型研究进展 - 2024年发布DriveWorld、GAIA-1等驾驶世界模型,支持场景生成与理解 [30][32] - 世界模型可预测未来视觉观测并辅助规划决策 [32] - 研究涵盖4D场景重建、占用预测等方向 [32] 扩散模型应用 - 扩散模型在自动驾驶中用于场景生成、数据增强和轨迹预测 [39] - CVPR 2024发布MagicDriveDiT等街景生成模型 [39] - 研究聚焦时空一致性、多视角生成等挑战 [39] 端到端自动驾驶 - 方法分为模仿学习、强化学习和多任务学习三大类 [61] - 最新工作如DriveGPT4、DriveMLM探索大模型与规划控制结合 [27][51] - 挑战包括长尾分布处理、安全验证等 [55][57] 行业资源与生态 - 社区提供TensorRT部署、BEV感知等工程问题解决方案 [71][73] - 与地平线、蔚来等公司建立内推渠道 [110] - 成员来自卡耐基梅隆、清华等高校及头部自动驾驶公司 [106][107]
端到端VLA这薪资,让我心动了。。。
自动驾驶之心· 2025-07-17 19:10
端到端自动驾驶技术发展 - 端到端自动驾驶分为一段式端到端和二段式端到端两大技术方向 自UniAD获得CVPR Best Paper后 国内智驾军备竞赛加速 理想汽车2024年宣布E2E+VLM双系统架构量产 [2] - 端到端技术通过传感器数据直接输出规划或控制信息 避免了模块化方法的误差累积 BEV感知和UniAD统一了感知与规划任务 推动技术跃迁 [2] - 当前技术发展出多分支 包括基于感知的UniAD 基于世界模型的OccWorld 基于扩散模型的DiffusionDrive 以及大模型驱动的VLA方向 [9] 技术挑战与行业需求 - 端到端技术需掌握多模态大模型 BEV感知 强化学习 视觉Transformer 扩散模型等跨领域知识 学习路径复杂且论文碎片化 [5] - VLM/VLA成为招聘刚需 3-5年经验可冲击百万年薪 小米ORION等VLA项目推动行业预研热潮 [2][20] - 学术界与工业界持续探索技术边界 但高质量文档缺失 实战指导不足 影响技术落地效率 [5][26] 课程核心内容设计 - 课程覆盖端到端发展史 技术范式比较 数据集评测等基础内容 重点解析BEV感知 扩散模型 VLM等背景知识 [11][12] - 二段式端到端章节分析PLUTO CarPlanner等经典算法 对比一段式方案的优缺点 [12] - 精华章节聚焦一段式端到端 详解UniAD PARA-Drive OccLLaMA DiffusionDrive等前沿工作 配套Diffusion Planner实战 [13][15][17] - VLA方向选取ORION OpenDriveVLA等案例 结合BEV 扩散模型 强化学习技术展开实战 [20] 技术框架与实战应用 - 课程构建端到端技术框架 帮助学员分类论文 提取创新点 形成研究体系 [7] - 实战环节包括Diffusion Planner代码复现 RLHF微调大作业 目标为达到1年算法工程师水平 [17][22][27] - 技术栈覆盖Transformer CLIP LLAVA等基础模型 强化学习RLHF GRPO等进阶方法 [18] 行业影响与人才需求 - 端到端技术推动自动驾驶量产方案革新 主机厂加速布局算法预研与交付 [23] - 课程面向具备自动驾驶基础及Python/PyTorch能力者 目标匹配企业实习 校招 社招需求 [24][27] - 技术掌握后可应用于场景生成 闭环仿真 多模轨迹预测等实际场景 提升工业落地能力 [15][17]
入职小米两个月了,还没摸过算法代码。。。
自动驾驶之心· 2025-07-16 16:46
自动驾驶行业趋势与职业发展 - 自动驾驶行业当前处于快速发展阶段,大模型与端到端技术成为核心方向[4][6] - 小米汽车在自动驾驶领域势头强劲,虽薪资水平中等但短期发展潜力较大[7] - 医学图像与工业检测领域技术门槛低于自动驾驶,可作为从业者备选方向[6] 求职与技能提升策略 - 实习经历需适当包装,重点突出与目标岗位相关的技术亮点[3][6] - 建议利用公司资源补充自动驾驶算法实践经验(如BEV、端到端),同时学习VLA、SFT等技术[6] - 需同步准备秋招与实习转正,多offer可增强薪资谈判能力[5][6] 技术研究方向与资源 - 视觉大语言模型、世界模型、扩散模型和端到端自动驾驶为四大前沿方向[10] - 自动驾驶数据集覆盖2D/3D目标检测、语义分割、轨迹预测等任务,包括NuScenes、BDD100K等主流数据集[25][26] - 扩散模型在自动驾驶中应用于场景生成、3D补全等任务,如DriveDreamer、MagicDriveDiT等创新方法[43] 社区与学习平台 - 知识星球提供自动驾驶课程、硬件资料及招聘信息,已形成学术-产品-就业闭环生态[8][62] - 社区目标3年内聚集万人规模,现有华为天才少年及领域专家入驻[8] - 会员可获取5000+干货内容、100+场行业直播及求职咨询等权益[62] 端到端自动驾驶进展 - 开源仓库收录E2E驾驶最新研究成果,涵盖感知、预测、规划全流程[45][49] - 特斯拉FSD验证了端到端模型可行性,但开环评估仍存争议[49] - 典型方法包括DriveGPT4(大模型驱动)、VADv2(概率规划)等[52][55]
一文尽览!近一年自动驾驶VLA优秀工作汇总~
自动驾驶之心· 2025-07-15 20:30
自动驾驶VLA技术进展 - 端到端自动驾驶成为主流范式,视觉-语言-动作(VLA)方法在学术界和工业界快速落地[2] - 理想、文远知行、小米、小鹏等主机厂正在大力尝试VLA技术的量产应用[2] - 2025年学术界和工业界涌现大量优秀工作,重点关注VLA落地可行性、扩散模型轨迹可靠性等问题[2] NavigScene技术突破 - 小鹏汽车提出NavigScene,解决局部传感器数据与全局导航信息的关键差距[2] - 开发三种互补方法:导航引导推理、导航引导偏好优化、导航引导VLA模型[2] - 实验显示显著提升感知、预测、规划和问答任务性能,实现超视距推理能力[2][6] - 在NuInstruct基准测试中,Qwen2.5-7B模型表现最佳,多项指标提升明显[5] AutoVLA创新框架 - UCLA提出AutoVLA,统一推理和动作生成的自回归模型[7] - 采用SFT+GRPO两阶段训练,在NAVSIM取得92.12 PDMS指标[9] - 在nuPlan、nuScenes等多个基准测试中展现竞争优势[8] - 实现自适应推理能力,可根据场景复杂度调整思维模式[12] ReCogDrive三阶段训练 - 华科与小米合作提出三阶段训练框架[13] - 收集2.3M高质量QA数据,通过预训练+模仿学习+强化学习流程[14] - 在NAVSIM基准达到89.6 PDMS,创下新SOTA记录[16] - 比之前最佳方法提升5.6 PDMS[16] 数据集与基准建设 - 清华AIR与博世发布Impromptu VLA数据集,包含80K+精选视频片段[17] - 理想汽车推出DriveAction基准,包含16,185个QA对,覆盖2610个驾驶场景[31] - 实验显示视觉和语言输入缺失会导致动作预测准确率下降3.3%-8.0%[31] - 基准建设被认为是行业未来重点发展方向[50] 技术趋势与挑战 - 思维链、空间理解成为标配技术,但车端必要性存疑[50] - 时序处理研究不足,与实际车端需求存在差距[50] - 轨迹输出形式分文本自回归和扩散模型两大路线[50] - 行业缺乏大规模自动驾驶预训练基座模型[50] - NAVSIM指标已逼近人类专家水平,验证技术可行性[50]
面试了很多端到端候选人,发现还是有很多人搞不清楚。。。
自动驾驶之心· 2025-07-13 21:18
端到端自动驾驶技术概述 - 端到端自动驾驶分为一段式端到端和二段式端到端两大技术方向 是当前薪资最高的算法岗位之一 3-5年经验可达百万年薪 [2] - 端到端系统实现从传感器输入到车辆规划/控制信息的直接建模 避免模块化方法间的误差累积 BEV感知打通模块化壁垒 UniAD统一感知和规划任务 [2] - 学术界和工业界聚焦端到端技术 衍生出多种算法流派 UniAD并非最终解 新算法不断涌现 [2] 端到端技术发展现状 - 技术方向包括多模态大模型 BEV感知 强化学习 视觉Transformer 扩散模型等 学习路径复杂 论文数量繁多 知识碎片化 [4] - 高质量文档缺乏 提高入门难度 学习目标驱动导航需结合实战 但缺乏系统指导 难以从理论过渡到实践 [4] - 最新技术流派包括:PLUTO为代表的二段式端到端 UniAD为代表的基于感知的一段式端到端 OccWorld为代表的基于世界模型的一段式端到端 DiffusionDrive为代表的基于扩散模型的一段式端到端 [9] 端到端课程体系 - 课程特点:直击痛点快速入门 构建领域框架提升研究能力 理论结合实践学以致用 [5][6][7] - 课程大纲:端到端算法介绍 背景知识 二段式端到端 一段式端到端与VLA 课程大作业 [11][12][13][15] - 重点章节:一段式端到端与VLA为课程精华 涵盖基于感知/世界模型/扩散模型/VLA的四大子领域 [13] 技术深度解析 - 二段式端到端:分析PLUTO CarPlanner Plan-R1等经典与前沿工作 对比一段式优缺点 [12] - 一段式端到端:UniAD和VAD为奠基作 PARA-Drive为最新进展 世界模型应用广泛 扩散模型实现多模轨迹预测 VLA为当前技术皇冠 [13] - 关键技术:Transformer CLIP LLAVA BEV感知 扩散模型 RLHF GRPO等构成完整技术栈 [14] 课程实施细节 - 开课时间8月15日 三个月完成 采用离线视频教学+VIP群答疑+三次线上答疑模式 [20] - 学员需自备4090及以上GPU 具备自动驾驶基础 熟悉Transformer 强化学习 BEV感知等技术概念 [22] - 预期成果:达到1年经验算法工程师水平 掌握端到端技术框架 可复现主流算法 应用于实际项目 [22]
某智驾公司一言难尽的融资。。。
自动驾驶之心· 2025-07-12 20:00
自动驾驶行业融资动态 - 某智驾公司因估值过高且量产项目稀少导致融资困难,估值接近头部企业但缺乏实际项目支撑 [3] - 该公司与头部车企达成特殊融资协议:车企投资智驾公司后,资金需全额返投至车企旗下经营困难的零部件子公司 [4] - 该操作实质为资金循环流转,旨在为车企子公司创造外部融资的公关宣传点,类似操作在该车企已有先例 [4] 行业竞争格局分化 - 头部智驾公司凭借算法优势与量产能力持续获得项目,年融资轮次可达1-2轮,形成良性发展循环 [5] - 技术实力薄弱的企业面临项目获取与融资双重困境,仅能获得有限市场份额 [5] - 2023年智驾市场竞争加剧,企业生存状态呈现"冰火两重天"两极分化 [5] 行业发展核心要素 - 实际量产交付能力被视为企业长期发展的关键,超越技术概念炒作的重要性 [5] - 算法性能提升与工程化落地能力是获得市场认可的基础要素 [5] - 部分企业为维系客户关系选择配合资本运作,但可能偏离技术深耕主线 [4][5] 技术发展趋势 - 行业聚焦端到端自动驾驶、世界模型等前沿技术方向 [7][9] - 感知技术领域形成BEV感知、Occupancy等30+技术路线矩阵 [7] - 大模型技术正渗透至感知、决策等多个技术环节 [7][9]
端到端VLA这薪资,让我心动了。。。
自动驾驶之心· 2025-07-10 20:40
端到端自动驾驶技术发展 - 端到端自动驾驶分为一段式端到端和二段式端到端两大技术方向 自UniAD获得CVPR Best Paper后 国内智驾军备竞赛加速 理想汽车2024年宣布E2E+VLM双系统架构量产 [2] - 端到端技术通过传感器数据直接输出规划或控制信息 避免了模块化方法的误差累积 BEV感知和UniAD统一了感知与规划任务 推动技术跃迁 [2] - 当前技术栈涉及多模态大模型 BEV感知 强化学习 视觉Transformer 扩散模型等 学习路径复杂且知识碎片化 [3] 技术课程核心内容 - 课程直击学习痛点 采用Just-in-Time Learning理念 通过案例快速掌握核心技术栈 [4] - 构建端到端自动驾驶研究框架 帮助学员分类论文 提取创新点 形成研究体系 [5] - 理论结合实践 涵盖PLUTO(二段式) UniAD(一段式感知) OccWorld(世界模型) DiffusionDrive(扩散模型) VLA(大模型)等主流技术 [6] 课程大纲与关键技术 - 第一章概述端到端发展历史 模块化到端到端的演变 一段式 二段式 VLA范式优缺点及工业界应用 [8] - 第二章重点讲解背景知识 包括VLA涉及的大语言模型 扩散模型 强化学习 以及BEV感知 为未来两年高频面试技术 [8][9] - 第三章聚焦二段式端到端 分析PLUTO CarPlanner Plan-R1等工作的优缺点 [9] - 第四章深入一段式端到端与VLA 涵盖UniAD PARA-Drive(感知) Drive-OccWorld OccLLaMA(世界模型) DiffusionDrive DiffE2E(扩散模型) ORION OpenDriveVLA ReCogDrive(VLA)等前沿工作 [10] - 第五章大作业为RLHF微调实战 涉及预训练和强化学习模块搭建 可迁移至VLA算法 [12] 行业趋势与人才需求 - VLM/VLA成为招聘刚需 3-5年经验可冲击百万年薪 技术上限高且工业界需求旺盛 [2][10] - 扩散模型与VLA结合成为热点 多模轨迹预测适应自动驾驶不确定性环境 多家公司尝试落地 [10] - 主机厂加速布局端到端算法预研和量产 如小米ORION等开源项目推动技术发展 [10][13]
筹备了半年!端到端与VLA自动驾驶小班课来啦(一段式/两段式/扩散模型/VLA等)
自动驾驶之心· 2025-07-09 20:02
端到端自动驾驶技术发展 - 端到端自动驾驶分为一段式端到端和二段式端到端两大技术方向,通过传感器数据直接输出规划或控制信息,避免模块化方法的误差累积 [1] - BEV感知打通模块化壁垒,UniAD统一感知和规划任务,标志着端到端时代的来临 [1] - 2024年理想汽车宣布E2E+VLM双系统架构量产,显示工业界对端到端技术的重视 [1] - 技术方向多样化:PLUTO(二段式)、UniAD(感知一段式)、OccWorld(世界模型一段式)、DiffusionDrive(扩散模型一段式)等算法涌现 [4] 技术挑战与学习痛点 - 端到端技术涉及多模态大模型、BEV感知、强化学习、视觉Transformer、扩散模型等多领域知识,学习路径复杂 [3] - 论文数量繁多且知识碎片化,缺乏高质量文档和系统实战指导,入门难度高 [3] - 目标驱动导航需闭环任务支持,但理论与实践衔接困难 [3] 课程核心内容与特点 - 课程覆盖端到端算法发展历史、技术范式(一段式、二段式、VLA)及工业界应用 [8][10] - 重点讲解背景知识:Transformer、BEV感知、扩散模型、VLM强化学习技术(RLHF、GRPO) [8] - 二段式端到端聚焦PLUTO、CarPlanner、Plan-R1等经典与前沿工作 [9] - 一段式端到端涵盖UniAD、OccWorld、DiffusionDrive、VLA等子领域,配套Diffusion Planner和ORION实战 [10][12][13] - 大作业为RLHF微调实战,可迁移至VLA算法 [14] 课程结构与安排 - 分五章展开:端到端概述、背景知识、二段式、一段式与VLA、RLHF大作业 [8][9][10][14] - 8月15日开课,三个月结课,离线视频+VIP群答疑+三次线上答疑 [20] - 章节解锁时间:第一章(8.01)、第二章(8.15)、第三章(8.30)、第四章(9.15)、第五章(10.30) [20] 目标人群与学习收获 - 需具备GPU(推荐4090+)、自动驾驶基础、Transformer/BEV/强化学习概念、Python/PyTorch能力 [22] - 学完可达1年经验算法工程师水平,掌握端到端框架及BEV、扩散模型、VLA等关键技术 [23] - 可复现主流算法,应用于实习、校招、社招场景 [23]