大模型推理

搜索文档
对话后摩智能CEO吴强:未来90%的数据处理可能会在端边
观察者网· 2025-07-30 14:41
公司动态 - 后摩智能在WAIC 2025首次展示M50系列芯片,包括M50芯片、力谋®BX50计算盒子、力擎LQ50 Duo M2卡等核心产品 [1] - M50芯片专为大模型推理设计,面向AI PC和智能终端场景,实现160TOPS INT8、100TFLOPS bFP16物理算力,搭配48GB内存和1536GB/s带宽,典型功耗仅10W [4] - 公司已启动下一代DRAM-PIM技术研发,目标突破1TB/s片内带宽,能效提升三倍,推动百亿参数大模型在终端设备普及 [9] 产品技术 - M50芯片支持1.5B到70B参数的本地大模型运行,具有"高算力、低功耗、即插即用"特点 [4] - 力擎LQ50 Duo M2卡采用标准M2规格,为AI PC和陪伴机器人提供即插即用的端侧AI能力 [4] - 公司通过存算一体技术实现AI大模型"离线可用、数据留痕不外露"的特性 [4] - 2024年初公司推出优化版M30芯片,针对大模型进行调整 [7] 市场战略 - 公司定位端边AI计算市场,CEO认为未来90%数据处理将在端和边完成 [1] - 意向客户包括联想的AI PC、讯飞听见的智能语音设备、中国移动的5G+AI边缘计算设备 [8] - 重点布局消费终端、智能办公、智能工业三大领域,包括平板电脑、智能语音系统、运营商边缘计算等场景 [8] - 将机器人视为新兴垂直赛道,类比十年前的智能驾驶市场 [8] 行业趋势 - 大模型发展呈现从训练向推理迁移、从云端向边端迁移两大趋势 [1] - 端边AI具有实时响应、低成本、数据隐私和用户体验优势,预计将成为未来趋势 [7] - 5G+AI边缘计算被视为重要发展方向 [8] - 公司CEO提出"让大模型算力像电力一样随处可得"的愿景 [5]
斯坦福大模型推理课免费了,谷歌推理团队创始人主讲
量子位· 2025-07-25 15:59
大模型推理能力 - 大模型推理指大语言模型在给出最终答案前的中间思考步骤,这种推理过程与人类思维无关,关键在于生成大量中间内容[5][9] - 有推理过程的回答会先分解问题并逐步推导(如拆分单词找字母),而非直接输出结果,这显著提升答案准确性(数学题正确率从随机猜测提升至逐步推导)[8][15][17] - 中间步骤使复杂问题可解:对于布尔电路规模T的问题,生成O(T)中间步骤后固定大小的Transformer即可解决,否则需极深模型或无法处理[11][12] 推理能力提升机制 - 思维链(CoT)赋能:引入CoT后无需扩展模型规模即可让Transformer解决任何问题,理论上可模拟多项式大小电路的计算,缩小与图灵机差距[12][13] - 解码方式优化:通过CoT-decoding从top-k解码路径中选择含推理且置信度高的路径,效果接近指令微调模型[25][26] - 监督微调改进:采用自我改进(模型自生成步骤纠错)和强化学习微调(验证器引导生成正确答案),后者成为当前最强推理引出方法[27][28][29][31] 前沿方法与未来方向 - 聚合与检索方法:通过边缘化自一致性(高频答案筛选)、通用自一致性(模型自主选择)及检索+推理(先回忆相关知识再解题)提升效果[40] - 未来突破方向:解决非唯一可验证答案任务(如开放式问题),构建实际应用而非仅优化基准测试[35][40] 核心研究背景 - 理论奠基:Denny Zhou与马腾宇等证明足够长思维链可使Transformer解决所有问题,其论文《Chain of Thought Empowers Transformers...》奠定领域基础[2][12][31] - 技术应用:Google DeepMind推理团队通过思维链、自洽性、任务分解等方向推动AGI发展,目标实现完美泛化[37]
AI真的需要「像人类」那样思考吗?AlphaOne揭示属于大模型的「思考之道」
机器之心· 2025-06-23 15:44
核心观点 - 研究提出AI模型应采用「先慢后快」的推理策略,而非模仿人类的「先快后慢」模式 [4][5] - AlphaOne框架通过引入全局推理调控超参数α,显著提升模型准确率和效率 [6][16] - 该方法无需额外训练,仅需在测试阶段调整α值即可实现推理优化 [6][13] 方法论 - 通过α-moment统一调控推理节奏,之前引导慢思考,之后切换快思考 [16][18] - 慢思考阶段采用Bernoulli过程插入wait标记,概率由调度函数控制 [20][21] - 快思考阶段用</think>标记终止慢思考,避免推理惯性 [24][25] 实验结果 - 在1.5B模型上准确率提升+6.15%,生成token数减少14% [29][30] - 线性衰减调度策略在多项任务中表现最优 [32] - α值可灵活调控思考预算,存在性能最优区间 [34] - 后α-moment调控机制对性能提升至关重要 [43] 应用场景 - 在数学解题、代码生成、科学问答等六大推理任务中验证有效性 [27] - 成功案例包括化学混合题,失败案例包括多角恒等式推理 [47] 未来方向 - 开发更复杂的慢思考调度策略 [48] - 摆脱对特定标记的依赖 [48] - 扩展至多模态推理场景 [48]
半壁江山都来了!中国AI算力大会演讲嘉宾全揭晓,同期异构混训、超节点两大研讨会议程公布
傅里叶的猫· 2025-06-17 23:30
2025中国AI算力大会概况 - 大会将于6月26日在北京中关村东升科技园万丽酒店举行,由智一科技旗下智猩猩、智东西联合主办,芯东西协办,是"智领未来"北京人工智能系列活动之一 [1] - 大会设置主会场、分会场和展览区,主会场包含高峰论坛、AI推理算力专题论坛和智算中心专题论坛,分会场将举行智算集群异构混训技术研讨会和超节点技术研讨会(闭门制) [1][2] - 已邀请近30位重量级嘉宾参会,包括中国信息通信研究院、摩尔线程、中昊芯英、魔形智能科技等机构和企业代表 [1][4][5] 主会场核心议题与演讲亮点 高峰论坛 - 摩尔线程副总裁王华将分享基于FP8的国产万卡集群训练实践,其夸娥(KUAE)智算集群解决方案已从千卡扩展至万卡规模,支持FP8精度计算满足DeepSeek V3/R1等大模型需求 [12][13] - 趋境科技陈祥麟将探讨千亿大模型私有化门槛降低10倍的技术路径,包括开源框架KTransformers实现单卡运行千亿大模型等创新 [31][32] - 中昊芯英CEO杨龚轶凡拥有74项中国专利和15项国际专利,曾参与Google TPU 2/3/4研发,将分享高端芯片设计经验 [16][17] AI推理算力专题论坛 - 安谋科技产品总监鲍敏祺将发布新一代"周易"NPU产品,采用大模型优化架构设计提升端侧算力,推动AI从云端下沉至终端设备 [39][40] - 实在智能欧阳小刚将展示Agent智能体技术在端侧的轻量化应用,包括模型高效推理引擎优化策略 [45] - 白山云科技李金锋将介绍边缘AI推理四大技术突破:异构资源弹性调度、智能网关全网调度、算力单元推理优化及模型加载优化技术 [49][50] 智算中心专题论坛 - 图灵新智算洪锐提出基于Token生成能力的智算集群效能评价体系,量化计算资源利用率 [5] - 趋动科技张增金倡导软件定义AI算力模式,通过虚拟化技术实现GPU资源池化,提升智算中心资源调度效率 [65][66] - 百度智能云郝玉涛分享AIDC技术突破:实现单体IDC万卡到3万卡集群部署,具备10万卡集群技术能力 [60][61] 分会场闭门研讨会重点 智算集群异构混训技术研讨会 - 壁仞科技丁云帆、中国移动王升等专家将探讨混合架构下的分布式训练优化方案 [68] - 商汤大装置技术产品总监刘叶枫将分享大规模异构算力调度经验 [68] 超节点技术研讨会 - 阿里云卢晓伟将解析基础设施异构硬件解决方案 [71] - 曦智科技孟怀宇聚焦光计算技术在超节点架构中的应用 [71] 行业技术发展趋势 - 大模型训练需求推动算力基础设施升级:模型参数量从千亿迈向万亿,万卡集群成为行业标配 [12] - 编译技术成为AI基础设施关键环节:中科加禾崔慧敏、魔形智能徐凌杰均指出其可解决硬件异构性和模型复杂性挑战 [22][26] - 边缘计算与中心云协同趋势明显:白山云等企业推动"云-边-端"全域智能范式演进 [49][50]
10% KV Cache实现无损数学推理!这个开源方法解决推理大模型「记忆过载」难题
量子位· 2025-06-16 12:49
大模型推理优化技术R-KV - 核心观点:R-KV是一种通过实时压缩KV缓存解决大模型推理冗余问题的高效方法,显著降低显存占用并提升吞吐量,同时保持100%准确率 [1][2][3] 技术原理 - 采用三步流程:冗余识别+重要性评估+动态淘汰,通过链式思考(CoT)优化推理路径 [5] - 实时对token进行排序,保留信息丰富且多样化的token,阻断显存膨胀 [7][9] - 结合多头注意力评估贡献度(重要性打分)和余弦相似度检测重复内容(冗余打分),按优先级动态调度KV配额 [9] 性能优势 - 显存降低90%,吞吐量提升6.6倍,准确率保持100% [1] - 在DeepSeek-R1-Llama-8B模型中,解决AIME数学题时KV缓存从4.1GB大幅压缩 [6] - 相比SnapKV等现有方法,R-KV覆盖范围更广(保留题目关键词、中间值及最终答案),避免误删关键信息 [13][14][15] 基准测试结果 - 数学任务表现:R1-Llama-8B在MATH-500准确率34%,R1-Qwen-14B在AIME24准确率25%,均超越基线 [19] - 16K序列长度下,固定1024预算时显存节省93.75%,最大批处理402次,吞吐量达3188.82 tok/s [20] - 比例压缩模式下(10%预算),8K序列吞吐量达3809.15 tok/s,显存节省90% [20] 应用场景 - 边端设备长链推理:消费级GPU甚至手机NPU可运行 [22] - 多轮Agent复杂流程:如反思-重写-自评,突破显存限制 [22] - 强化学习加速:training-free方法即插即用 [22] 技术实现细节 - 可视化对比显示R-KV能跨段保留关键信息,而SnapKV聚焦局部片段导致重复 [12][13][14] - 计算开销被注意力成本降低抵消,序列越长收益越显著 [20][21] - 主要吞吐提升源于支持更大批处理规模,而非直接速度优化 [21]
SGLang 推理引擎的技术要点与部署实践|AICon 北京站前瞻
AI前线· 2025-06-13 14:42
SGLang 开源推理引擎发展现状 - 截至2025年6月 GitHub Stars达15K 月均下载量突破10万次 [1] - 已被xAI Microsoft Azure NVIDIA AMD LinkedIn 美团等行业巨头采用 [1] - 成为DeepSeek R1官方推荐推理引擎 并实现首个完全开源的大规模专家并行部署方案 [1] 核心技术优势 - 采用PD分离架构控制尾延迟 推测解码提升Token生成速度 KV缓存落盘优化显存 [2] - 实现RadixAttention Overlap Scheduling等高效架构设计 复现PD分离 大规模EP等前沿技术 [3] - 支持离线批处理最大化GPU利用率 线上推理优先保障Token生成速度的差异化部署策略 [4] 并行部署技术挑战 - 专家并行实现中面临通讯与Prefill/Decode传输KV缓存的时间重叠问题 [4] - 网卡资源争抢 CPU负载过大 Python GIL锁释放不及时等工程挑战突出 [4] 社区生态建设 - 开源模式吸引广泛参与 技术分享增强社区认同感 [5] - 超过100k显卡规模的工业部署经验反哺技术演进 [5] 关键技术解析 - PD分离使Decode延迟均匀稳定 允许采用不同并行策略提升资源利用率 [6] - 推测解码通过隐藏层信息一次预测多个Token 显著提升Decode速度 [6] - KV缓存落盘将历史上下文存储至大容量设备 避免重复Prefill计算 [6] 部署实践洞察 - 参数配置调试是影响上线效率的关键环节 需精细化优化而非依赖"开箱即用" [7] - 模型规模持续扩大背景下 多GPU与高效并行策略是实现高性价比部署的必经之路 [7] 行业活动预告 - AICon全球人工智能开发与应用大会将深入解析大模型推理关键技术 [2][7] - 聚焦AI Agent构建 多模态应用 大模型推理优化等前沿议题 [7]
大模型推理,得讲性价比
虎嗅APP· 2025-06-06 18:10
华为MoE架构技术突破 - 华为推出昇腾平台原生设计的Pangu Pro MoE 72B模型,大幅降低计算开销,在SuperCLUE千亿内模型并列国内第一[3] - 通过系统级软硬协同优化、高性能算子融合优化、模型原生投机算法优化,Pangu Pro MoE推理性能提升6~8倍[3] - 在昇腾300I Duo上单卡吞吐可达321 tokens/s,在昇腾800I A2上更可飙升至1528 tokens/s[3] 分层混合并行(H2P)优化 - 提出创新性的H2P分层混合并行策略,根据任务特性"分工开小会",让每个部分在各自的通信域内高效执行[6] - Attention模块采用DP2+TP4并行方案,Expert模块采用TP2+EP4策略,共享专家以TP8全芯并行[6] - 相比纯TP方案,Decode吞吐性能提升33.1%[7] 通信瓶颈优化(TopoComm) - 提出SlimRing算法合并相邻通信步的后同步与前同步操作,同步次数降低35%[10] - 提出NHD算法通过拓扑亲和的分级通信等效提高链路有效带宽21%[10] - 引入INT8 AllGather + FP16 Reduce-Scatter混合量化通信策略,实现通信数据压缩25%,AllGather通信耗时降低39%[10] 计算&通信融合(DuoStream) - 提出DuoStream算子级多流融合通算优化方案,实现计算与通信的细粒度并发调度[11] - 构建GMMRS与AGMM两大融合策略,克服通信与数据搬运和计算之间的瓶颈[11] - 显著提升模型在昇腾平台上的推理效率,最大化释放硬件资源潜能[11] 融合算子优化 - 打造MulAttention和SwiftGMM两支精锐融合算子特种部队[16] - MulAttention实现Attention计算加速4.5倍,达成89%以上的数据搬运流水占用率[17] - SwiftGMM实现GMM计算加速2.1倍,解码阶段整网推理时延降低48.7%[20] 推理算法加速 - 提出专家动态剪枝算法PreMoE,实现推理吞吐提升10%+[25] - 提出TrimR反思压缩算法,推理步数降低14%[27] - 提出SpecReason反思投机算法,推理吞吐提升30%[27] 昇腾平台性能表现 - 昇腾800I A2平台在BS=456时单卡吞吐达1148 tokens/s,较72B和32B稠密模型分别提升97%和18%[30] - 结合MTP投机推理技术,单卡BS可提升至146,最高吞吐突破1528 tokens/s[30] - 昇腾300I Duo平台在BS=128时单卡吞吐最高达321 tokens/s,提供更具性价比的MoE推理解决方案[32]
MoE推理「王炸」组合:昇腾×盘古让推理性能狂飙6-8倍
机器之心· 2025-06-06 17:36
混合专家模型技术突破 - 华为推出昇腾平台原生设计的Pangu Pro MoE 72B模型,显著降低计算开销并在SuperCLUE千亿内模型评测中并列国内第一 [2] - 通过软硬协同优化实现推理性能提升6~8倍,昇腾300I Duo单卡吞吐达321 tokens/s,昇腾800I A2单卡吞吐飙升至1528 tokens/s [3] - 采用分层混合并行(HP)策略,Decode吞吐性能相比纯TP方案提升33.1%,通过模块化分工优化通信效率 [5][6][7] 通信与计算协同优化 - 提出TopoComm优化方案,同步次数降低35%,链路有效带宽提高21%,通信数据压缩25%,AllGather通信耗时降低39% [9] - 开发DuoStream多流融合方案,实现计算与通信细粒度并发调度,解决Expert模块通信瓶颈 [12] - 构建GMMRS与AGMM融合策略,关键通信路径流水掩盖,显著提升硬件资源利用率 [12] 高性能算子创新 - 开发MulAttention融合算子,Attention计算加速4.5倍,数据搬运流水占用率89%,访存带宽利用率87% [16] - 推出SwiftGMM矩阵计算引擎,GMM计算加速2.1倍,解码阶段整网推理时延降低48.7% [18] - 算子优化实现KV缓存搬运效率提升,路由专家权重搬运瓶颈突破 [15][16][18] 推理算法创新 - 专家动态剪枝算法PreMoE保持模型准确率同时提升推理吞吐10%+ [21] - TrimR反思压缩算法通过小模型监测大模型思考过程,推理步数降低14% [22] - SpecReason反思投机算法结合大小模型优势,推理吞吐提升30% [22] 昇腾平台性能表现 - 昇腾800I A2平台4卡部署下,大并发场景单卡吞吐1148 tokens/s,较72B/32B稠密模型提升97%/18%,MTP技术下最高吞吐达1528 tokens/s [24] - 昇腾300I Duo平台4卡部署实现小并发延迟50ms,大并发单卡吞吐201 tokens/s,MTP技术下吞吐最高321 tokens/s,提供高性价比解决方案 [26] - 预填充阶段2卡2路并发实现2k序列输入延迟1.94s,单卡吞吐1055 tokens/s [26]
中移齐鲁创新院发布“迅测”工具:助力国产芯片选型效率跃升
齐鲁晚报· 2025-06-06 16:15
行业趋势 - 大模型推理成本持续下降和国产芯片快速发展推动政务、金融、医疗等数据敏感行业加速推进推理模型国产化本地部署 [1] - 国产智算芯片型号众多、性能差异显著,高效准确压测模型推理性能成为筛选高性能低成本芯片的关键挑战 [1] 技术创新 - 中移齐鲁创新院自主研发"迅测"芯片推理性能自动压测工具,创新构建"配置即测试"压测模式并集成数据自动解析能力 [1] - "迅测"工具单轮测试人工值守时长从平均8小时降至0.5小时,数据整理耗时减少70%,整体芯片选型效率提升3倍 [1] - 工具核心技术亮点包括基于vLLM的智能自动压测和压测数据自动汇总及可视化分析 [3] 技术细节 - 通过智能调度vLLM引擎实现一键化操作,用户仅需设定并发请求量即可自动执行多轮压力测试 [3] - 支持本地和宿主机远程两种压测模式,适配不同芯片的单节点或多节点部署需求 [3] - 采用标准化数据存储机制自动计算生成错误率、单路输出速度等核心性能指标,确保跨平台测试结果可比性 [3] - 内嵌数据可视化引擎直观呈现芯片性能差异,自动化日志解析技术解决海量日志人工汇总痛点 [3] 应用成果 - 已完成DeepSeek系列大模型在天数智芯、华为昇腾、壁仞科技、瀚博半导体等主流国产计算平台上的推理性能测试 [3] - 生成精细化对比报告包含多项关键参数对比矩阵,为国产大模型推理芯片选型提供重要参考依据 [3]
算力产业近况解读
2025-05-25 23:31
纪要涉及的行业和公司 - **行业**:算力产业、GPU 行业 - **公司**:英伟达、华为、阿里巴巴、百度、腾讯、字节跳动、寒武纪、昆仑芯、韩 5G、海光、火山引擎、智谱、讯飞 纪要提到的核心观点和论据 市场需求与前景 - **全球和国内 GPU 市场需求持续增长**:中国因贸易摩擦,依赖国产或降配版进口芯片;国际上美国生成式多模态及 AGI 技术发展、其他地区推进大模型行业落地带动算力需求[1][3] - **未来两年存在两种情景**:贸易摩擦加剧,国产芯片需求增加;关系缓和,降配版进口芯片推动多模态应用发展,无论哪种情景算力需求都增加[3] 英伟达产品情况 - **英伟达 H20 不受青睐**:降配后性能优势减少、利润下降,头部互联网公司或云服务企业倾向选择性价比更高的国产芯片,国产卡逐渐占据更多市场份额[1][4][5] - **英伟达在中国市场 GPU 卡性价比降低**:预计 2025 年再推降配版 H20 难获大量订单,仅个别急需公司可能购买[5] - **国内公司倾向 B20 而非 H20**:H20 性能下降严重,无法满足多模态推理和 agent 应用需求;B20 架构并行速度和卡间协作更佳,单机内和集群内表现损耗小[1][11] - **B 系列降配版能满足禁令要求**:H 系列因物理架构限制,缩减显存和降低计算频率会使集群表现大幅下降;B 系列架构处理好,配置低时表现损耗小[12] 国产芯片情况 - **华为升腾系列有进展但存在不足**:升腾 910C 通过 3D 空间式设计提升单机架内算力约 25%,但缺乏 Nvlink 导致数据传输速度受限[6] - **韩 5G 芯片有突破但表现欠佳**:实现单片参数技术突破,但在组网及复杂计算中表现欠佳,高可用性材料有差距[6] - **国产芯片需补足多方面**:软硬件结合能力不足、产能问题(如寒武纪无训练卡生产能力)、良品率低,导致显存、传输速度、更新迭代及产能分布存在不足[20] 国内互联网巨头自研芯片情况 - **阿里巴巴**:通过平头哥系列服务于阿里云,用于降低成本、硬件加速和 IoT 场景[7] - **百度**:通过昆仑芯推进大模型推理商业化,与飞桨开发框架适配,实现自主可控[7] - **腾讯和字节跳动**:集中于视频解码、加速及神经网络训练等领域,字节跳动还尝试与台积电合作研发高性能多模态推理芯片[7] 应用场景与算力投入 - **推理场景资源消耗接近训练场景**:2025 年多模态推理场景资源消耗与训练相差无几,特定场景推理成本超训练成本,预计 2026 年互联网公司算力投入向推理倾斜[1][8][9] - **公有云需求未显著增长**:中小企业接入大模型 API 或构建 agent 较少,市场以头部公司自有业务为主导,社会面日常 TOKEN 消耗量相对较低[10] 市场供应与租赁挑战 - **高性能计算芯片供应情况**:英伟达 H20 大部分被头部公司购买,A100 和 A800 应用场景有限,H100 和 H800 价格昂贵,小型企业难以负担,且头部公司考虑数据安全不轻易选择外部集群[17] - **企业租赁高性能芯片面临挑战**:大规模预训练需显卡集中,推理环节需求无法分散,高性能芯片大规模使用存在市场供应量和技术困难,零星或大规模租赁不可行[2][19] 多模态技术市场情况 - **多模态技术占领市场概率高**:2024 - 2025 年末市场规模预计增长 15 - 20 倍,火山引擎大模型有效 tokens 部分来自公有云供中小企业使用[14] 其他重要但可能被忽略的内容 - **字节跳动租赁情况**:租赁 IDC 和机房存放芯片,年初租赁算力用于抖音和豆包相关功能加速,为临时性非大规模租用 GPU[15][16] - **腾讯 GPU 采购困难**:今年一季度疯狂购买 GPU,二三月难买到,四月底五月甚至考虑向字节跳动购买,反映国内市场优质 GPU 资源争夺激烈且供不应求[22] - **非上市公司芯片情况**:昆仑芯推理效果优异,集群版每秒可处理 4000 多个 tokens,单机版能处理三四十个 tokens,P 系列推理优化后集群表现优于华为 910B;韩 5G 芯片带宽传输有瓶颈、耗电量大;海光少量采购组网测试,测试质量难保证[23][24] - **全球 GPU 市场格局及资本开支**:2025 年资本开支增长迅速,2026 年预计下降至 50%以下;字节跳动和阿里巴巴算力采购总量可能降至 80%左右,腾讯增加采购量,百度需求与今年持平但推理侧需求增加;若政策支持,百度将增加昆仑芯产能或进口芯片;2026 年华为生成芯片产能约 85 万,可能被国央企优先购买[25]