经天磁体
搜索文档
“人造太阳”加速商业化意味着什么
人民日报· 2025-10-20 15:48
聚变能技术发展现状 - 聚变能技术正从科学研究向工程实践和商业应用加速迈进 [2] - 中国将可控核聚变列为实现碳达峰碳中和目标的重点方向,前瞻部署聚变能等未来能源科技创新 [2] - 我国聚变装置矩阵持续扩容,形成覆盖不同技术路线、衔接不同发展阶段的多元支撑格局,为工程化、产业化突破筑牢硬件基础 [3] 主要科研装置与突破 - 新一代人造太阳“中国环流三号”(HL-3)国内首次实现原子核温度1.17亿摄氏度、电子温度1.6亿摄氏度,综合参数聚变三乘积实现大幅跃升 [3] - “中国环流三号”已建成用于聚变能量导出研究的工程性液态金属和氦气工质热工研究台架,为未来聚变堆的工程化应用奠定关键实验基础 [3] - 全超导托卡马克核聚变实验装置“东方超环”(EAST)成功实现1亿摄氏度1066秒稳态长脉冲高约束模等离子体运行,再次刷新世界纪录 [4] - “东方超环”包含超过200多项自主创新的核心技术,并孵化出等离子体焊接设备、微波污水处理装置等产业化成果 [4] - 紧凑型聚变能实验装置“夸父启明”(BEST)完成主机杜瓦底座落位安装,项目主体工程建设步入新阶段 [4] - 聚变堆主机关键系统综合研究设施“夸父”(CRAFT)自主设计的偏滤器原型部件通过验收,该部件是国际尺寸最大、热负荷最高的同类部件 [4] - 新奥集团“玄龙-50U”球形环装置实现重要突破,是全球首个采用氢-硼燃料实现百万安培等离子体电流的装置 [5] - 初创公司能量奇点研发的高温超导磁体“经天磁体”成功实现21.7特斯拉峰值磁场强度 [5] 商业化进程与全球趋势 - 据国际原子能机构报告,全球近40个国家推进聚变计划,处于运行、在建或规划中的聚变装置超160座,私人投资总额已突破100亿美元 [6] - 意大利政府目标在2030年实现首个等离子体;美国能源部宣布6个新的“聚变创新研究引擎”合作项目,提供1.07亿美元资金;德国发起“聚变2040”计划,2028年前拟投入3.7亿欧元 [6] - 实现聚变能商业化运用需经历6个阶段,目前我国正处于“燃烧实验”阶段,已具备开展相关实验的等离子体参数条件 [6] - 2027年底,“中国环流三号”计划将等离子体三乘积提升2-3倍、温度突破1.5亿摄氏度,开展高性能等离子体实验 [6] - 计划在2027年开启聚变能燃烧实验,2030年左右具备中国首个工程实验堆的研发设计能力,2035年左右建成中国首个工程实验堆,2045年左右建成我国首个商用示范堆 [7] 政策支持与生态体系建设 - 中国自2021年起连续发布政策文件支持可控核聚变研发,包括《关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》、《“十四五”现代能源体系规划》、《关于推动未来产业创新发展的实施意见》等 [8] - 2025年9月,原子能法经全国人大常委会审议通过,明确规定鼓励和支持受控热核聚变的科学研究和技术开发 [8] - 安徽合肥依托“东方超环”打造聚变能源产业集群,形成百亿元级产业规模;四川聚变科创城致力建设可控核聚变全球性技术研发高地和产业发展集群 [8] - 我国作为ITER计划关键合作伙伴,高质量完成18个关键部件和系统的设计制造任务,并与50多个国家的140余家核聚变科研机构建立合作 [9] - 2025年7月,中核集团牵头组建中国聚变能源有限公司,可控核聚变创新联合体成员单位扩容至38家,已启动“聚变堆超导磁体产业化”等重点项目 [9]
聚变能技术从科研向工程实践和应用迈进 “人造太阳”加速商业化意味着什么(瞰前沿·大国重器)
人民日报· 2025-10-19 06:08
文章核心观点 - 聚变能技术正从科学研究加速迈向工程实践和商业应用,商业化成为全球热点 [1] - 中国通过政策支持、装置突破与国际合作,构建聚变能工程化产业化发展的生态体系 [1][8] - 行业处于燃烧实验阶段,目标在2035年建成工程实验堆,2045年建成商用示范堆 [6][7] 中国聚变科研装置进展 - 中国环流三号(HL-3)实现原子核温度1.17亿摄氏度、电子温度1.6亿摄氏度的双亿度等离子体运行,聚变三乘积大幅跃升 [2] - 中国环流三号建成工程性液态金属和氦气工质热工研究台架,为聚变堆工程化应用奠定实验基础,并于2023年12月被确立为ITER卫星装置面向全球开放 [2] - 东方超环(EAST)成功实现1亿摄氏度1066秒稳态长脉冲高约束模等离子体运行,刷新世界纪录,包含超过200项自主创新核心技术 [3] - 紧凑型聚变能实验装置夸父启明(BEST)完成主机杜瓦底座落位安装,主体工程建设进入新阶段 [3] - 聚变堆主机关键系统综合研究设施夸父(CRAFT)自主设计的国际尺寸最大、热负荷最高的偏滤器原型部件通过验收,为商用堆研发提供关键技术验证 [3] 民营企业与技术创新 - 新奥集团玄龙-50U球形环装置实现全球首个氢-硼燃料百万安培等离子体电流,验证150千安下环向场线圈稳定运行及1.2特斯拉磁场满负荷性能 [4] - 能量奇点研发的高温超导磁体经天磁体实现21.7特斯拉峰值磁场强度,专为下一代托卡马克装置设计 [4] - 等离子体物理研究所与多家机构共建联合实验室,孵化出等离子体焊接设备、微波污水处理装置等产业化成果 [3] 全球聚变能商业化态势 - 全球近40个国家推进聚变计划,处于运行、在建或规划中的聚变装置超160座,私人投资总额突破100亿美元 [5] - 意大利目标在2030年实现首个等离子体,美国能源部提供1.07亿美元资金支持6个聚变创新研究引擎合作项目,德国拟投入3.7亿欧元加强研发 [6] - 实现聚变能商业化需经历原理探索、规模实验、燃烧实验、实验堆、示范堆、商用堆六个阶段,中国目前处于燃烧实验阶段 [6] 中国政策与生态体系支持 - 2021年《关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》将可控核聚变列为低碳前沿技术攻关重点领域 [8] - 2022年《十四五现代能源体系规划》支持受控核聚变前期研发与国际合作,2024年《关于推动未来产业创新发展的实施意见》加强聚变关键核心技术攻关 [8] - 2025年原子能法明确规定国家鼓励和支持受控热核聚变的科学研究和技术开发 [8] - 安徽合肥依托东方超环打造百亿元级聚变能源产业集群,四川聚变科创城建设可控核聚变全球性技术研发高地和产业发展集群 [8] 国际合作与机制创新 - 中国作为ITER计划关键合作伙伴,高质量完成18个关键部件和系统设计制造,2025年主导真空室模块组件吊装入位及大型装备交付 [9] - 中国与50多个国家140余家核聚变科研机构合作,发布聚变能领域首个ISO国际标准《聚变堆热氦检漏技术》 [9] - 2025年7月中核集团牵头组建中国聚变能源有限公司,可控核聚变创新联合体成员扩容至38家,启动聚变堆超导磁体产业化等重点项目吸引社会资本 [9] 商业化挑战与未来规划 - 技术层面需突破等离子体稳态燃烧、耐强场高温负荷材料、超导磁体、氚燃料自持等难题 [7] - 产业生态需解决产供链成熟性、经济可承受性、投资可持续性、监管可适配性问题 [7] - 中国计划2027年开启聚变能燃烧实验,2030年具备工程实验堆研发设计能力,2035年建成工程实验堆,2045年建成商用示范堆 [7]
“人造太阳”加速商业化意味着什么(瞰前沿·大国重器)
人民网· 2025-10-19 05:58
文章核心观点 - 全球聚变能技术正加速从科学研究迈向工程实践和商业应用 中国在该领域通过多元化的装置矩阵和积极的政策支持 构建了完整的产业发展生态体系 [3][4][10] 中国聚变科研装置进展 - 新一代人造太阳"中国环流三号"实现原子核温度1.17亿摄氏度、电子温度1.6亿摄氏度的"双亿度"等离子体运行 并建成用于聚变能量导出的工程性研究台架 [4] - 全超导托卡马克装置"东方超环"成功实现1亿摄氏度1066秒稳态长脉冲高约束模等离子体运行 刷新世界纪录 并孵化出等离子体焊接设备等产业化成果 [5] - 紧凑型聚变能实验装置"夸父启明"完成主机杜瓦底座安装 聚变堆主机关键系统综合研究设施"夸父"的偏滤器原型部件通过验收 为商用堆研发提供关键技术验证 [5] 民营企业与初创公司进展 - 新奥集团"玄龙—50U"球形环装置实现重要突破 成为全球首个采用氢—硼燃料实现百万安培等离子体电流的装置 [6] - 能量奇点公司研发的高温超导磁体"经天磁体"实现21.7特斯拉峰值磁场强度 专为下一代托卡马克装置设计 [6] 全球商业化态势与规划 - 全球近40个国家推进聚变计划 处于运行、在建或规划中的聚变装置超160座 私人投资总额已突破100亿美元 [8] - 中国聚变能商业化路线图规划为:2027年开启聚变能燃烧实验 2030年左右具备首个工程实验堆研发设计能力 2035年左右建成首个工程实验堆 2045年左右建成首个商用示范堆 [9] 政策与生态体系支持 - 中国连续发布政策文件支持聚变能发展 包括2021年将可控核聚变列为低碳前沿技术攻关重点 2025年原子能法明确鼓励和支持受控热核聚变研究 [10] - 地方层面 安徽合肥依托"东方超环"打造百亿元级聚变能源产业集群 四川建设聚变科创城 [10] - 国际合作方面 中国作为ITER计划关键合作伙伴 高质量完成18个关键部件和系统设计制造 并与50多个国家的140余家科研机构建立合作 [11] - 机制创新上 中核集团牵头组建中国聚变能源有限公司 可控核聚变创新联合体成员扩容至38家 启动"聚变堆超导磁体产业化"等重点项目吸引社会资本 [11]
算力太费电或将催生“未来能源”——这正是上海布局的五大未来产业之一 探索解决“AI尽头”的电力难题——“解码上海AI产业链”④
解放日报· 2025-06-03 09:40
AI与能源的融合 - AI是耗电大户,ChatGPT每日耗电量相当于一户美国家庭40多年的用电量,凸显能源在AI训练中的关键地位 [1] - 在"双碳"目标下,上海探索"算能融合"模式,通过AI"节流"提高能源利用率,电力"开源"保障AI算力需求 [1] 以算促能 - AI技术可优化能源配置,如英国电网引入谷歌DeepMind风能预测系统后调度效率提升20%,运营成本降低 [2] - 上海浦东供电公司运用"AI大脑"处理变电站故障模拟,方案编制时间缩短至30秒内,准确率达100% [2] - AI优化电网稳定性,同时降低自身能耗,形成电力需求与AI产业的正向循环 [2] 算电协同实践 - AI产业对电能质量要求极高,毫秒级电压波动可能导致设备损失数十万至百万元 [3] - 上海达卯智能的能源大模型通过"算电协同"将无序算力波动转化为有序调度,商汤临港智算中心能源利用效率指标从1.74降至1.3以下 [3] 以能补算 - 未来AI算力需求仅靠"节流"无法满足,上海布局"未来能源"产业,推动长时储能和核聚变技术研发 [4] - 长时储能技术可稳定供给新能源电力,预计2030年市场规模突破万亿元,成为AI产业能源保障新基建 [4] 核聚变能源前景 - 核聚变发电具有燃料无限、零碳排放和安全性优势,一杯海水能量相当于300升汽油 [5] - 上海"能量奇点"公司研制的高温超导磁体创21.7特斯拉纪录,上海未来产业基金战略投资中国聚变能源公司,加速核聚变商业化 [5][6]