Workflow
国际热核聚变实验堆(ITER)
icon
搜索文档
记者手记:集群星之力“造太阳”
新华社· 2025-10-19 17:39
行业合作与共识 - 全球首个国际原子能机构聚变能研究与培训协作中心宣布落地中国,表明聚变能领域的国际合作已成多国共识[2] - 来自全球60余个国家和地区的近2000名政府高官、国际组织负责人、专家学者和行业领袖齐聚大会,显示出广泛的国际参与度[1] - 国际原子能机构总干事格罗西表示,各国应探索更多样化的合作模式,分享技术与监管等多样化见解以建立深入合作[4] - 小组讨论中,不同国家的代表表达了强烈的合作和技术互通愿望[4] 行业发展阶段与路径 - 聚变能正经历从科学研究向工程实践转化的关键阶段[2] - 经过近二十年的发展,全球聚变能研发已进入多路径并行、快速迭代的新阶段[4] - 国际热核聚变实验堆(ITER)项目自2006年启动,中国在其中承担了第一壁项目[2] - 中国自主的“中国环流三号”装置于2020年12月4日首次放电成功[2] 技术成果与产业链发展 - 在路演活动中,“沿途下蛋”的成果集中亮相,聚变产业链的“底气”正层层累积[2] - 通过参与ITER项目等国际协作,中国在一次次攻坚克难中积累了宝贵的技术成果并带动了相关产业发展[2] - 行业认为已经能够看到聚变商用的曙光[4]
科学与健康丨聚变能研发进入新阶段,“人造太阳”离我们有多远?
新华网· 2025-10-19 07:28
聚变能技术概述 - 模拟太阳产生清洁能源被视为人类的终极能源梦想 [1] - 核聚变需将氘氚等离子体加热至超1亿摄氏度 约为太阳核心温度的6至7倍 以克服原子核间排斥力实现持续聚变 [2] - 可控核聚变集等离子体物理、核工程、材料科学等难题于一身 是人类构想的最复杂能源系统之一 [2] 全球研发进展与挑战 - 全球聚变能研发进入多路径并行、快速迭代新阶段 主流技术路线分为磁约束和惯性约束两大类 [3] - 国际热核聚变实验堆ITER项目于2020年启动组装 旨在证明磁约束聚变可行性 为2040至2050年示范电站奠定基础 [3] - 当前大型托卡马克装置可短暂实现聚变反应条件 但进一步提高聚变功率增益、改善等离子体约束稳定性及维持净能量输出仍面临巨大挑战 [3] 中国研发路径与成就 - 中核集团按实验堆、示范堆、商业堆路径开展研发 预计2027年左右开展燃烧等离子体实验 技术成熟后建设先导堆和商业堆 [3] - 2025年中国环流三号首次实现原子核和电子温度均突破1亿摄氏度 [5] - 全超导托卡马克装置EAST创造1亿摄氏度1000秒高质量燃烧新世界纪录 紧凑型聚变能实验装置BEST主机关键部件完成安装 [5] 国际合作与影响 - 国际原子能机构聚变能研究与培训协作中心落地成都 标志中国在聚变能源领域国际地位与影响力显著跃升 [4] - 中国将与国际原子能机构、ITER组织及各国共同推进全球能源创新可持续发展 [5] - 成功实现可控聚变将从根本上破解对化石燃料依赖 并带动超导材料、人工智能控制等前沿领域集群发展 [2]
科学与健康|聚变能研发进入新阶段,“人造太阳”离我们有多远?
新华社· 2025-10-18 16:58
可控核聚变的意义与挑战 - 可控核聚变是理论上取之不尽用之不竭的终极清洁能源 可从根本上破解人类对化石燃料的依赖 [2][3] - 实现可控核聚变需将氘氚等离子体加热至超1亿摄氏度 约为太阳核心温度的6至7倍 以克服原子核间排斥力 [3] - 可控核聚变是迄今人类构想的最复杂能源系统之一 集等离子体物理、核工程、材料科学等领域的难题于一身 [3] 全球研发进展与技术路线 - 全球聚变能研发已进入多路径并行、快速迭代的新阶段 主流技术路线为磁约束和惯性约束两大类 [4] - 国际热核聚变实验堆(ITER)项目于2020年启动组装 旨在证明磁约束聚变可行性 为2040至2050年示范电站奠定基础 [4] - 当前大型托卡马克装置已可短暂实现聚变反应条件 但进一步提高聚变功率增益和维持长时间净能量输出仍面临巨大考验 [4] 中国研发进展与规划 - 中核集团正按照“实验堆—示范堆—商业堆”路径开展聚变堆研发 预计2027年左右开展燃烧等离子体实验 [5] - 2025年“中国环流三号”首次实现原子核和电子温度均突破1亿摄氏度 标志着中国可控核聚变技术取得重大进展 [6] - 全超导托卡马克核聚变实验装置(EAST)创造世界纪录 首次完成1亿摄氏度1000秒高质量燃烧 [6] 国际合作与地位 - 国际原子能机构聚变能研究与培训协作中心落地成都 标志着中国在聚变能源领域的国际地位与影响力显著跃升 [6] - 中国是世界上少数几个有完整核工业体系的国家之一 已形成以国家重大科技基础设施为引领的产学研协同创新体系 [6]
ITER副总干事:已有资本进入核聚变领域 但商业化还有距离
第一财经· 2025-09-20 17:02
核聚变行业商业化进展 - 核聚变领域已有资本进入但距离商业化仍有距离 [1] - 国际热核聚变实验堆(ITER)为全球最大核聚变实验装置 属于科学研究实验室且无法发电 [1] 核聚变技术发展时间线 - ITER建成后需进行10至20年实验以提升科学和技术成熟度认知 [1]
中国民企“造太阳”:一场关乎终极能源的豪赌,开始了!
搜狐财经· 2025-06-17 14:23
核心观点 - 可控核聚变是未来能源竞争的关键领域 具有高能量密度 燃料丰富和无中子辐射等优势 民营企业正通过技术创新和资本投入加速商业化进程 [9][12][31] - 新奥集团作为国内首家完全由民营企业发起并领投的可控核聚变项目 在氢硼聚变路线上取得重大突破 实现百万安培等离子体电流放电 [19][21][23] - 全球商业核聚变投资规模达65亿美元 中国资本占比快速提升 形成国家队与民营企业协同推进的产业格局 [41][39][42] 行业技术进展 - 国际热核聚变实验堆(ITER)于2020年在法国启动组装 目标2035年后实现能量增益Q≥10的稳定运行 [14][32] - 中国国家队代表机构中科院等离子体物理研究所(EAST)2025年实现1亿摄氏度1000秒高质量燃烧 核工业西南物理研究院"中国环流三号"创下百万安培亿度H模运行纪录 [35][37][38] - 商业公司技术突破:能量奇点2023年建成全球首个全高温超导托卡马克"洪荒70" 新奥"玄龙-50U"2024年实现国际首次百万安培氢硼等离子体放电 [40][21][31] 企业投资与布局 - 新奥集团2018年启动核聚变项目 累计投入40亿元研发资金 组建300人团队含20余名海外高层次人才 计划投资60亿建造下一代装置"和龙-2" [19][21] - 产业资本加速进入:米哈游投资能量奇点 蔚来资本参与聚变新能50亿元融资 顺为资本 中科创星等机构投资星环聚能数亿元 [39][40] - 全球商业核聚变近五年累计融资65亿美元 美国历史占比70% 但中国近三年通过国资 产业基金和民营企业形成合力快速追赶 [41][39] 技术挑战与路线选择 - 核聚变三大技术难点:上亿摄氏度等离子体加热 磁约束系统维持 超导材料与工程成本控制 [31] - 氢硼路线需30亿度高温(太阳核心200倍)但具备无中子辐射 燃料成本低等商业化优势 氘氚路线虽温度要求低但存在氚管制和材料辐射损伤问题 [31][21] - 商业化阶段分为等离子体放电 高温高密度实现 能量增益Q>1及Q≥10稳定运行四个里程碑 目前全球尚未实现氘氚发电 [32][22] 政策与产业环境 - 中国政策支持民营企业参与核电项目 民间资本参股比例已达20% 国新办明确鼓励民营资本投入"两重两新"领域 [14] - 美国出台禁令暂停对华出口核电设备 反映能源技术竞争已成为国家战略竞争核心 [10][11]
多国共建“人造太阳”达成重要里程碑
解放日报· 2025-05-18 12:12
国际热核聚变实验堆(ITER)项目进展 - 世界最大脉冲超导电磁体系统完成全部组件建造 被ITER组织称为"里程碑式成就" 标志着可控核聚变能源实现关键突破 [1] - 电磁心脏系统包含中心螺线管(高18米 直径4.25米 磁场强度13特斯拉)和六个环形极向场磁体(直径9-25米) 总重近3000吨 [2] - 中国参与制造环形极向场磁体 中科院合肥研究院研制磁体馈线系统(ITER磁体"生命线") [3] 技术原理与性能参数 - 采用托卡马克装置模拟太阳核聚变 将氢同位素结合成氦释放能量 燃料来自海水且无长期放射性废物 [2] - 运行时可实现10倍能量增益:输入50兆瓦加热功率产生500兆瓦聚变功率 [2] - 中心螺线管磁场强度达地球磁场28万倍 结构强度相当于航天飞机发射推力的两倍 [2] 国际合作与项目规模 - 全球30多国参与 由欧盟/中国/美国/日本/韩国/印度/俄罗斯共同资助 使用超导线材超10万公里 [2][3] - 1985年倡议启动 2006年签署条约 2020年进入重大工程安装阶段 被视为跨国科技合作典范 [3] - 数千名科学家在三大洲数百家工厂协作 突破地缘政治限制维持合作框架 [3] 商业化发展动态 - 过去5年私营企业对聚变能源研发投资激增 30家企业预测商业化时间介于2028-2040年 [4] - 技术路径差异导致商业化时间预测跨度大 需解决基础工程问题 [4] - 英国学者指出全球协同研发态势令人振奋 不同于以往个别国家单独研究模式 [4]
特稿|多国数十年共建“人造太阳”达成重要里程碑
新华社· 2025-05-01 18:46
文章核心观点 国际热核聚变实验堆(ITER)组织宣布“人造太阳”完成脉冲超导电磁体系统全部组件建造,标志人类向可控核聚变能源迈出关键一步,该项目是国际合作典范且商业化前景可期但时间难以精确预测 [1] 探索可控核聚变 - ITER是托卡马克装置,旨在探索可控核聚变技术商业化可行性,由多国共同资助,聚变原理与太阳相同,不产生长期放射性废物且燃料海水含量丰富 [1] - ITER系统运转时先注入氘氚混合气体形成等离子体,用磁体控制,加热到1.5亿摄氏度实现聚变,全面运行时预计输入50兆瓦加热功率产生500兆瓦聚变功率 [2] - 新建成脉冲磁体系统是托卡马克装置“电磁心脏”,由中心螺线管和六个环形极向场磁体协同工作,完整组装后重量接近3000吨 [2] 全球合作树立典范 - ITER是全球最大、最复杂科技合作项目之一,被视为国际合作应对全球挑战典范,多国持续合作,数千名科学家和工程师参与,磁体超导线材由6国9家工厂生产 [3] - ITER磁体馈线系统由中科院合肥物质科学研究院等离子体物理研究所研制,该所承担众多采购包,占中国承担任务大部分 [3] - 成员国以建造和供应部件承担建设成本,推动创新积累知识构建全球聚变供应链,所有成员国均可获100%知识产权 [4] 商业化前景可期 - 过去5年私营企业对聚变能源研发投资激增,2023年ITER理事会鼓励成员国与私营部门合作,2024年启动相关项目并举办研讨会 [4] - 目前聚变能源商业化预测差异大,30家私营企业代表给出时间从2028年到2040年不等,因技术路径不同且需解决基础工程问题,时间难以精确预测 [4][5]
AI赋能核聚变离不开生态融合
中国能源网· 2025-04-28 14:43
核聚变行业现状 - 核聚变被称为"人造太阳",模拟太阳内部能量释放机制,需在极端条件下将轻原子核聚合并释放巨大能量 [1] - 核聚变研究需要集成人类在材料、工程和控制领域的最高技术成就,难度超越现有认知与经验边界 [1] - ITER项目汇聚全球35个国家资源,中国EAST装置与ITER深度联动,覆盖70个国家和地区、150余家科研机构 [2] - 中国环流三号2023年底面向全球开放,2024年首轮国际联合实验吸引17家全球机构参与 [2] AI赋能核聚变研发 - AI在处理核聚变复杂数据、精准预测、智能控制等方面展现强大优越性 [3] - 等离子体数据分析从"至少数小时建模"提升至"毫秒级求解",并能实时预测趋势 [3] - AI模型实现提前300毫秒预测,有效避免等离子体不稳定导致的反应中断 [3] - 语言大模型整合聚变专业知识、专家经验和试验记录,构建跨领域知识中枢 [3] 生态融合与协作 - AI与聚变融合将打通数据壁垒,深化互补性资源整合,降低研发风险 [3] - 开源生态模式在AI领域已验证其有效性,同样适用于核聚变领域 [2] - 生态共建成为加速可控核聚变商业化的核心动力,需开放协作、高效数据流通和长期投入 [4]