Workflow
Agent
icon
搜索文档
晚点对话 MiniMax 闫俊杰:千万别套用移动互联网的逻辑来做 AI
晚点LatePost· 2025-01-17 15:46
核心观点 - 公司认为AI行业的核心驱动力是技术迭代而非用户增长,智能水平的提升不依赖大量用户反馈[8][17][19] - 公司明确自身定位为技术驱动型企业,在技术路线与产品需求冲突时优先选择技术突破[22][23] - 行业存在方法论误区,多数企业仍用移动互联网推荐系统思维开发AI产品[12][20][97] - 开源是加速技术进化的有效路径,公司首个开源模型MiniMax-01采用创新线性注意力机制架构[9][14][15] 技术路线 - MiniMax-01系列模型突破性采用线性注意力机制新架构,可高效处理400万token长上下文[9][45] - 模型参数规模超4000亿,是全球首个在此量级实现线性注意力机制的大模型[76] - 技术目标聚焦Agent能力提升,重点突破长上下文记忆、多Agent协同等方向[40][44] - 明确不跟风o系列模型开发,认为蒸馏技术虽可行但非核心创新路径[53][54][58] 产品策略 - 旗下海螺视频生成模型月访问量已达全球第一梯队水平[77] - AI社区产品"星野"用户留存率优于字节等大厂竞品[7][92] - 放弃移动互联网式增长目标,2025年核心KPI转为技术研发指标[106][129] - 测试中的信息获取产品尝试重构推荐逻辑,实现精准学术内容推送[62][63] 行业认知 - 中美AI差距在于中国缺乏原创性技术benchmark,过度依赖对齐国外模型输出[72] - 大模型与推荐系统存在本质差异:前者依赖预设能力分级,后者依赖AB测试[21][66] - 行业已从"Scaling Law信仰"转向寻求算法、组织等层面的持续创新[33][34] - 竞争格局不应区分创业公司与大公司,关键在于技术进化速度[98][114] 组织管理 - 团队结构保持三级扁平化管理,强调客观技术评估文化[79][81] - 人才策略承认字节跳动的人才密度优势,但认为创业公司更利技术人才成长[82][130] - 决策机制建立在共同技术认知基座上,弱化明确分工边界[125][126] - 主动优化团队结构,淘汰非技术驱动型人员[115][116] 创始人反思 - 复盘早期失误包括过度关注用户指标、未及时开源、产品定位摇摆[13][15][24] - 认知升级关键点在于明确技术迭代优先于商业化目标[132][133] - 创业方法论强调简单专注,拒绝"天选之子"叙事[30][140] - 自我定位非技术天才型创始人,重视团队协作价值[96][136]
AI 月报:10 亿美元训练不出 GPT-5;低成本中国开源大模型走红;AI 幻觉不全是坏处
晚点LatePost· 2025-01-07 22:59
技术进展 - OpenAI训练GPT-5遇阻,已投入20个月和至少10亿美元算力成本,但性能提升未达预期,两次从头训练均未突破博士生水平目标[4] - 数据短缺迫使OpenAI采用人工生成数据(工程师/科学家每日5000字)和模型生成数据(o1模型)补充,但规模仍远低于GPT-4的10万亿字训练量[5] - o3模型在CodeForces编程竞赛得分比o1提升44%,数学测试EpochAI解决25.2%问题(其他模型<2%),但AGI评测得分因数据预训练存在争议[7][9] - 强化学习重要性提升,OpenAI推出RFT微调方法,LangChain报告显示人类反馈强化学习应用增长18倍[5][9] - 世界模型取得突破:DeepMind的Genie 2生成可交互虚拟场景,李飞飞团队实现AI图片转3D场景,CMU/英伟达开源机器人模拟系统Genesis[14] 行业竞争 - Google Gemini 2.0 Flash系列模型抢占Chatbot Arena前三,OpenAI首次失去榜首地位[18][21] - 中国开源模型崛起:DeepSeek-V3以578万美元训练成本逼近GPT-4o性能,Qwen2.5-plus超越Meta Llama 3.1[23][26] - 芯片领域博通市值破万亿美元,2024年AI收入增长220%至122亿美元,为Google/Meta等提供自研芯片方案[29] - 英伟达推出B300 GPU适配o系列模型,算力/显存提升50%,xAI计划将H100算力中心从10万张扩展至100万张[33][34] 应用与商业化 - OpenAI推出12项ChatGPT升级:订阅费最高2000美元/月,集成Sora视频生成、电话交互、生产力工具插件等功能[36] - Agent成为新趋势,Google Gemini 2.0专为Agent优化,YC预测其市场规模将比SaaS大10倍[12][13] - 大模型嵌入传统行业:Salesforce招聘2000人推广AI Agent,微软Phi-4模型(140亿参数)性能超越更大模型[38][12] - AI硬件进展:Meta计划为Ray-Ban眼镜增加屏幕,OpenAI重组机器人团队,中国预计2025年出现"百镜大战"[40] 投融资动态 - 21家AI公司获超5000万美元融资:中国智谱AI获30亿元(估值200亿元),阶跃星辰聚焦多模态模型,Liquid AI开发新型神经网络架构[42][43] - 基础设施领域Databricks融资86亿美元(估值620亿美元),Tenstorrent获7亿美元开发RISC-V架构AI芯片[44] - 应用层公司多成立于ChatGPT前:Zest AI(金融风控)、Tractian(工业设备监测)、Speak(语言学习)等获大额融资[46][47][48] 科学价值 - 大模型"幻觉"被科学家重新定义:加速抗生素研发(MIT)、生成全新蛋白质(诺奖得主Baker实验室获100项专利)[50][51]
为什么我们对 25 年 AI 极度乐观?| 42章经
42章经· 2025-01-06 05:54
AI市场发展回顾与展望 - 23年AI市场爆发初期,互联网从业者和美元基金迅速涌入,投资焦点集中在大模型公司,OpenAI背景人才备受追捧 [1] - 24年上半年一级市场跌至十年最低谷,大模型公司热度消退,Pre Training模式被质疑,具身智能成为新投资关键词 [2] - 24年9月后市场出现三大变化:融资复苏、多模态模型能力突破(图片/语音/视频生成达GPT-3水平)、AI创二代创始人涌现 [3] 技术演进趋势 - 大模型呈现四大趋势:基础设施化、开源快于闭源、多模型混合方案受青睐、产品价值高于技术 [2] - 多模态进展超预期,视频和3D模型发展速度显著快于语言模型,推理模型o1推动Agent落地 [3] - AI Native产品形态可能通过多模态实现突破,NotebookLM展示跨模态内容组织新范式 [13][14] 投资与创业格局 - 25年市场两极分化加剧:美元基金聚焦出海,人民币基金侧重硬科技/国产替代,初创公司首轮估值达3000-5000万美金 [4][5] - 应用落地成为共识方向,生产力工具类产品主导市场,20-30家应用公司估值超5000万美金,头部ARR达1000万美金 [2][6] - 创始人画像迭代:从互联网转型者变为AI创二代(大厂AI负责人/创业公司联创),认知水平和商业模式显著升级 [3] 商业模式变革 - Prosumer(小B大C)模式验证成功:兼具C端传播属性和B端付费能力,预计25年将出现千万美金ARR公司 [6] - Agent商业模式可能颠覆SaaS:按结果付费替代订阅制,销售体系重构,新创企业比现存SaaS公司更具转型优势 [7][8][9] - Perplexity案例显示搜索平台可能演变为任务完成型Agent,成为AI时代核心入口 [12] 未来重点方向 - Agent领域三大机会:2B场景落地、存量SaaS公司AI化、新商业模式创业公司反攻 [11] - 多模态潜在突破点:视频作为内容输出终局、用户从被动接收转向参与式消费、生产关系变革 [15] - 技术-商业协同效应:AI理解能力+多模态组织将重塑产品形态,如NotebookLM的交互式对话设计 [13][14]
为什么我们对 25 年 AI 极度乐观?| 42章经
42章经· 2025-01-05 21:54
市场趋势与行业动态 - 2023 年 AI 创业投资关键词是大模型,2024 年是具身智能,2025 年将是应用落地[2][4] - 2024 年 9 月后融资市场复苏,各种模态模型能力加强,创始人画像改变,市场进步将延续到 2025 年[4] - 2025 年市场环境将进一步变好,但会更加两极分化,资本方向上美元基金和人民币基金分化,创业融资更倾向背景好的人[4] 投资机会与潜在风险 - 2025 年看好应用落地方向,尤其是生产力工具类产品,预计会出现一批千万美金 ARR 的创业公司[4] - 2025 年看好 Agent 和多模态方向,Agent 主要在 2B 领域落地,新商业模式的 Agent 创业公司将冒头反攻现存 SaaS 企业[4][5] - 多模态可能藏着 AI Native 的答案,未来产品组织形态和使用逻辑可能彻底变化[7] 公司财务表现 - 当下市场约 20 - 30 家应用类公司估值超 5000 万美金,多数应用公司 ARR 年收入为 0,少数找到 PMF 的达 100 万美金 ARR,极少数头部项目达 1000 万美金 ARR[2] 技术发展趋势 - 大模型逐渐成为基础设施,开源进展速度超闭源,实际应用落地偏向多模型混合方案[3] - 推理模型能力提升解锁 Agent 可能性,未来各专业人群、垂直领域都有 Agent 机会[4] 商业模式分析 - Agent 若按结果付费,将对现有 SaaS 公司和模式产生颠覆式变化,销售人员管理和组织模式也会改变[5]
智谱CEO张鹏:加速Agent模型产品研发,期待尽快实现一句话操作电脑和手机
IPO早知道· 2024-11-30 10:36
公司技术进展 - 智谱于11月29日发布AutoGLM升级版 可自主执行超过50步的长步骤操作并支持跨App执行任务 [2] - AutoGLM具备四大能力 包括理解超长指令执行超长任务 支持跨App执行 支持长任务自定义短语 以及主动决策的随便模式 [2] - AutoGLM启动大规模内测 将尽快上线成为面向C端用户的产品 并启动10个亿级App免费Auto升级计划邀请App伙伴探索新场景 [2] - 智谱推出基于PC的自主Agent GLM-PC 基于多模态模型CogAgent实现会议替身预定和参与会议发送总结 以及文档处理下载发送理解总结等功能 [2] - GLM-PC支持网页搜索与总结 可在指定平台搜索关键词完成阅读总结 并支持远程定时操作及隐形屏幕功能在用户工作时自主完成工作 [3] 技术发展路径与愿景 - 智谱定义大模型发展五阶段 L1语言能力 L2逻辑与多模态能力 L3使用工具能力 L4自我学习能力 L5探究科学规律 [3] - Agent技术将极大提升L3使用工具能力 同时开启对L4自我学习能力的探索 智谱CEO张鹏表示团队将继续加速Agent模型产品研发 [3] - Agent是目标驱动型 能够完全执行工作流程 适应学习迭代 与其他系统和人类协作 并端到端完成任务 可视为大模型通用操作系统LLM-OS的雏形 [3] - AutoGLM在人与应用间添加执行调度层 改变人机交互形式 并展现LLM-OS可能性 基于大模型智能能力未来有望实现原生人机交互新范式 [5] 研发历程 - 智谱从23年4月AgentBench开始 到8月CogAgent模型 针对AutoGLM和GLM-PC的模型研发工作已进行一年半时间 [3]