低温超导材料

搜索文档
可控核聚变专题:磁体材料更迭驱动托卡马克性能提升
2025-08-11 22:06
行业与公司概述 - 行业聚焦可控核聚变领域,磁约束技术路线(尤其是托卡马克装置)为当前主流,国内外项目推进超预期[1][2] - 高温超导材料(如REBCO)是未来核心趋势,其磁场强度可达12特斯拉(低温材料仅3-6特斯拉),推动设备小型化与性能提升[12][14] - 磁体材料占托卡马克装置成本28%(低温超导)至46%(高温超导),是核心投资环节[7][15] 核心技术与路线 - **技术路线对比**: - 磁约束方案(托卡马克、仿星器)因工程可行性高成为首选,引力约束(不可行)和惯性约束(难持续)被淘汰[8] - 托卡马克最成熟(ITER、BEST等项目采用),FRC路线适合分布式发电[4][6] - **装置差异**: - 托卡马克通过TF/CS/PF/CC线圈控制等离子体(如ITER含18个TF线圈)[10][11] - 仿星器(如德国W7-X)采用螺旋磁场,磁镜(如美国WHAM)结构不同[9] 关键材料与市场 - **超导材料演进**: - 低温超导(铌钛/铌三锡)需液氦环境,高温超导(REBCO/BSCCO)可在液氮下运行,成本更低且磁场更强[13][14] - 高温超导带材中,第二代(镀膜工艺)比第一代(银占比70%)更具成本优势[13] - **市场需求**: - 高温超导材料需求量预计从2024年3亿元增至2030年49亿元(CAGR 60%)[3][15] - 核聚变磁体占高温超导应用50%,超导磁控单晶炉等占其余份额[14] 国内外动态与公司 - **国内进展**: - 汉海聚能点火、上海中国聚变能成立、诺尔聚变融资到位,合肥/上海招标在即[2][5] - 重点关注高温超导带材公司:上海超导、永鼎股份、金达;磁体公司联创光电[1][7][17] - **国际项目**: - 美国Helen项目计划2030年向微软售电,Spark项目磁场强度达12特斯拉[1][12] - 国外企业ASD、FFG、古河电工主导低温超导电缆,上海超级电缆(扩产快)为国内代表[16][17] 潜在风险与关注点 - **技术瓶颈**:高温超导材料规模化生产与成本控制仍需突破[13] - **后续催化剂**:国内招标进度(如成都揭牌、合肥主机招标)、国外项目点火时间[5][6] 注:数据与观点均引自原文,未作主观推断。
超导磁体行业深度:核聚变系列报告:可控核聚变商业化加速实现,超导磁体未来应用前景广阔
中银国际· 2025-08-05 09:59
行业投资评级 - 强于大市 [1] 核心观点 - 可控核聚变商业化加速实现,超导磁体作为磁约束可控核聚变装置的核心部件有望充分受益 [1] - 高温超导材料的应用显著提升了聚变装置的磁场强度和性能,推动商业化进程 [33] - 超导磁体在核聚变领域的潜在市场规模庞大,预计到2050年超导磁体空间超千亿美元 [1] 磁约束聚变装置 - 托卡马克是目前最为主流的可控核聚变装置,全球占比接近50% [13] - 磁体系统是托卡马克装置的核心部件,成本占比高达28% [16] - ITER项目的磁体系统包括18个TF线圈、6个PF线圈和1个CS线圈,设计复杂 [17] 超导材料发展 - 低温超导材料如NbTi和Nb3Sn已实现商业化生产,但高温超导材料仍处于产业化初期 [39] - 高温超导材料如REBCO具有更高的临界温度和热稳定性,适合高磁场应用 [39] - 高温超导材料价格显著高于低温超导材料,但随着技术进步价格逐年下降 [47] 超导磁体应用 - 超导磁体在MRI、NMR、感应加热设备等领域有广泛应用 [1] - 高温超导磁体的制备工艺复杂,技术壁垒较高 [39] - 超导磁体产业链包括材料制备、绕制工艺和终端应用,未来市场空间广阔 [47] 相关上市公司 - 联创光电、西部超导、精达股份(上海超导)、永鼎股份等公司具备超导磁体制造能力 [3] - 西部超导是全球唯一的低温超导全流程生产企业,涉及NbTi锭棒、线材和磁体生产 [67] - 上海超导是高温超导材料的技术引领者,其第二代高温超导带材价格逐年下降 [51]
聚变磁约束结构仿星器VS托卡马克
2025-06-18 08:54
纪要涉及的行业和公司 - **行业**:核聚变行业 - **公司**:国光电气、安泰科技、合顿智能、上海电气、西部超导、有研股份、金达股份、上海超导、永鼎股份、王子新材、埃克赛博、英杰电气、旭光电子、宏讯科技、范亚电气 纪要提到的核心观点和论据 - **一级市场积极推进仿星器路线**:德国 Fusion 完成 1.3 亿欧元融资,计划 2030 年初建成 1GW 规模聚变电站[1][7] - **仿星器与托卡马克各有优劣**:托卡马克外形圆形、对称性好,但等离子体电流驱动可能致不稳定;仿星器无需等离子体电流驱动、运行更稳定,但磁场结构复杂、约束性能稍逊且设计挑战大[4][5] - **应关注核聚变综合指标**:可控核聚变需考量温度、等离子密度及能量约束时间即核聚变三重级,单一因素无法全面反映实现程度,如德国 W7 - X 放电 43 秒但三重级水平与中国 EAST 相当甚至略高[1][8] - **国内核聚变研究进展显著**:华南区 3 号装置达到并超过 1.6 亿度最佳点火温度,未来进展可能加速[1][9] - **2025 下半年至年底核聚变领域或受多重因素催化**:包括政策支持、产业发展(上海超导上市、多个项目招标)、欧盟聚变战略发布及英国投资计划等[1][9] - **关注核聚变相关个股关键及核心部件**:如偏滤器 DEB、真空室、低温超导材料等,相关公司有国光电气、安泰科技等[2][10] 其他重要但可能被忽略的内容 - **磁约束装置主流结构**:包括托卡马克、仿星器、反场箍缩、球马克和磁镜等,托卡马克和仿星器占绝对主流[4] - **仿星器发展历史及全球进展**:概念 1951 年由美国提出,日本和德国造诣深厚,德国 W7X 于 2015 年成功放电,中国西南交通大学与日本联合研发填补国内空白[6] - **仿星器优化方向及进展**:集中在模块化线圈系统制造等,德国 W7 - X 实现 43 秒放电,德国 Fusion 计划 2027 年前验证关键硬件[7] - **仿星器与托卡马克国内外发展情况**:国内以托卡马克为主力,仿星器有进展,海外两者发展速度快,未来国内可能加大仿星器投入[11]
超导材料:供需紧张,核聚变加速的重要驱动
2025-06-16 23:20
行业与公司分析总结 1 超导材料分类与技术路线 - 超导材料分为低温超导(临界温度<25K,如铌钛合金)和高温超导(临界温度≥25K,如铋锶钙铜氧系)[2] - 按磁场响应分为第一类(单一临界磁场)和第二类(双临界磁场)超导体[2] - 高温超导带材多层结构包括金属基带、缓冲层、超导层和保护层[7] - 制备工艺包括IBAD、PVD(平整薄膜)、CVD等[7] 2 超导材料制备工艺与优缺点 - 超导层制备方法: - PLD法:薄膜密度高但设备昂贵[8] - MOCVD法:大面积均匀但原料成本高[8][9] - MOD法:原料利用率高但技术难度大[9] - 国内外企业技术路线差异: - 上海超导/胜驰科技:PLD工艺[10] - 东布超导/Superpower:MOCVD路线[10] - 上创超导/美国超导:MOD技术[10] 3 核聚变领域应用 - ITER项目磁体投资占比28%,EAST项目磁体投资数十亿元[11] - 低温超导用于ITER磁体系统(18个环向场线圈等)[11] - 高温超导应用于Spark项目(全高温超导路线)[11][13] - 高温超导可提升磁场强度,降低核聚变装置成本[13] 4 行业发展趋势 - 2025年核聚变行业加速发展,实验堆/示范堆规划启动[12] - 试验堆投资进度约10%,下半年招标将展开[12] - 超导材料工序紧张,需求端持续提升[12][14] - 国内企业总产能7,000公里,良率限制实际产量[3][15] 5 主要企业动态 - 上海超导: - 2025年产量4,000公里,计划2027年扩产至4倍[16] - 市场份额领先,良率行业前列[16] - 东部超导: - MOCVD工艺优势,永鼎控股稀缺标的[17] - 西部超导: - 低温磁体龙头,扩展高性能磁体业务[18] - 联创光电: - 主导星火1号项目,先发工艺积累优势[18][19] 6 供需与市场机会 - 星火1号项目需求1.5万-2万公里,供需紧张[3][15] - 关注企业: - 金达股份/永林股份/西部超导:订单潜力大[3][19] - 国光电器/安泰科技:设备及组件环节龙头[19] 7 技术发展前景 - 高温超导渗透率提升,未来技术趋势[6] - 需突破规模化制备瓶颈,降低成本[4][6] - 室温超导尚未跨越应用门槛[5]
可控核聚变近期进度更新及市场展望
2025-05-20 23:24
纪要涉及的行业和公司 - **行业**:可控核聚变行业 - **公司**:美国 CFS 公司、中国聚变新能公司、西部超导、北特科技、西电集团、荣信电子、保定天威、科聚变、巨能科技、科业电气、金一电器、安泰公司、东方钽业、尼索思、合肥聚能、合肥科业、法国 Ambion、Tales 公司、一重、二重、东方电气、上海电气、合肥核段智能、安必平、THALES 公司、南南资源公司、能量基点、信恳智能、新奥集团 纪要提到的核心观点和论据 - **技术进展**:激光聚变已突破科学可行性阈值,迈向工程可行性;托卡马克磁约束未完全达到科学可行性阈值,中国环流器十三号接近阈值但距 Q 值上限有差距,美国国家点火装置净能量增益 Q>5,验证实验装置优化可行性,但成本降低和商业应用仍需努力[1][3] - **项目进度**:ITER 项目进度推迟,预计 2040 年左右完成,比原计划推迟至少五年;各国同步研发小型化和新技术应用,未来一两年推进高温超导材料应用成熟化和进一步降本等关键节点[1][5] - **商业化趋势**:由私人资本主导,集中于小型化单项技术研发;磁约束寻求资金支持,磁惯性约束侧重中子源研究,纯惯性约束因高精度和激光器数量难以民用[1][6][7] - **国内项目情况**:由国家队主导,西南物理研究院计划广泛融资,2028 年后建设新一代工程堆;合肥等离子体研究所的 EAST 和 WEST 装置力争成为首个 Q>1 的托卡马克,早于美国 CFS 完成示范性工程堆[1][2][8] - **技术优势与挑战**:优势是全超导托卡马克装置可实现更长时间、更高强度的等离子体约束,高温超导材料应用逐渐成熟;挑战是极高精度控制、巨额资金投入和复杂系统协调[1][9] - **商业化时间节点**:预计 ITER 项目 2027 年建成,2025 - 2030 年可能达到工程目标阶段,2030 - 2035 年建设工程堆,最乐观估计 2040 年第一个商业堆完全商业化[3][26][27] - **核聚变电站成本与规模**:建设成本高昂,磁体系统占比约 35%;为达经济效益,热功率建议在两吉瓦左右,电功率 80 - 100 万千瓦之间,总投资目标压缩在 300 亿元人民币[3][14][29] - **超导材料应用**:低温超导在降本和良率方面更成熟,工程示范堆阶段 70%超导材料预计采用低温,30%采用高温[34] 其他重要但是可能被忽略的内容 - **各公司研究方向**:上海公司复刻 CFS 研发方向,建造“洪荒 70”装置,未来有望成顶级磁体供应商;清华大学团队新环装置验证磁重联加热的重复重联运行模式[10][11] - **裂变聚变混合堆技术**:能更快实现能量增益,但存在核废料半衰期长、后处理及安全防护问题,是中间产物,非最终目标[13] - **核心设备和材料**:磁体系统材料主要是稀土,包括低温和高温超导材料,西部超导是主要供应商;加热、电源、真空室、燃料增值等系统也有各自技术要求和供应商[14][15][17][19] - **核聚变与商用核电**:可参考商用核电配套设施,基本原理和方向一致,但不能完全采用;核聚变燃料消耗远低于裂变燃料[23] - **加热装置**:回旋加速器、中性束和微波装置用于加热等离子体,组合使用提升等离子体温度[25] - **试验装置功率**:最佳试验装置功率约 50 兆瓦[28] - **核聚变国家标准**:核安全仍是首要考虑因素,安全要求比核裂变低;真正用于发电标准预计 2030 - 2035 年间形成,与核裂变标准体系有十年差距[31] - **中国聚变公司项目**:托卡马克装置 3 号升级改造进行中,后续关注中心磁体加工钢超导材料招标,确保 2027 年总装完成;其他项目如能量极点二代机型和新奥公司高温超导装置也在推进[33] - **超导材料在其他系统应用**:在真空室、电源等系统方面低温与高温超导无显著差异,各系统需达到商业化水平实现整体功能[35] - **电气设备供应**:中国电气设备供应能力强,参与核聚变项目玩家众多[36]