因子选股

搜索文档
东方因子周报:Beta风格领衔,一个月UMR因子表现出色,建议关注市场敏感度高的资产-20250810
东方证券· 2025-08-10 20:43
量化模型与构建方式 1. **模型名称**:DFQ-FactorGCL - **模型构建思路**:基于超图卷积神经网络和时间残差对比学习的股票收益预测模型[6] - **模型具体构建过程**:未详细描述 2. **模型名称**:DFQ-FactorVAE-pro - **模型构建思路**:加入特征选择与环境变量模块的FactorVAE模型[6] - **模型具体构建过程**:未详细描述 3. **模型名称**:Neural ODE - **模型构建思路**:时序动力系统重构下深度学习因子挖掘模型[6] - **模型具体构建过程**:未详细描述 量化因子与构建方式 1. **因子名称**:Beta风格因子 - **因子构建思路**:衡量股票对市场波动的敏感性,基于贝叶斯压缩后的市场Beta[16] - **因子具体构建过程**:$$Beta = \text{贝叶斯压缩后的市场Beta}$$[16] - **因子评价**:近期表现突出,市场对高Beta股票偏好稳定[11][13] 2. **因子名称**:UMR因子(一个月UMR) - **因子构建思路**:风险调整后的动量因子,基于一个月窗口计算[21] - **因子具体构建过程**:未详细描述 - **因子评价**:在中证全指样本空间中表现最佳[47] 3. **因子名称**:DELTAROA - **因子构建思路**:单季总资产收益率同比变化[21] - **因子具体构建过程**:$$DELTAROA = \text{单季总资产收益率} - \text{去年同期总资产收益率}$$[21] - **因子评价**:在中证1000样本空间中表现最佳[36] 4. **因子名称**:非流动性冲击 - **因子构建思路**:衡量股票流动性风险,基于过去20个交易日日度涨跌幅绝对值比成交额的均值[21] - **因子具体构建过程**:$$ILLIQ\_1M = \frac{\sum_{t=1}^{20} |r_t|}{V_t}$$[21] - **因子评价**:在国证2000样本空间中表现最佳[39] 5. **因子名称**:预期PEG - **因子构建思路**:一致预期滚动PE与个股滚动净利复合增长率的比值[21] - **因子具体构建过程**:$$TTM\_FPEG = \frac{\text{一致预期滚动PE}}{\text{个股滚动净利复合增长率}}$$[21] - **因子评价**:在沪深300样本空间中表现最佳[24] 6. **因子名称**:一年动量 - **因子构建思路**:剔除近1个月的过去一年涨跌幅[21] - **因子具体构建过程**:$$MOMENTUM\_1Y = \sum_{t=2}^{12} r_t$$[21] - **因子评价**:在中证500样本空间中表现最佳[28] 模型的回测效果 1. **DFQ-FactorGCL模型**:未提供具体回测数据 2. **DFQ-FactorVAE-pro模型**:未提供具体回测数据 3. **Neural ODE模型**:未提供具体回测数据 因子的回测效果 1. **Beta风格因子**: - 近一周收益:0.88%[13] - 近一月收益:5.18%[13] - 今年以来收益:21.07%[13] 2. **一个月UMR因子**: - 近一周收益:1.82%[47] - 近一月收益:1.49%[47] - 今年以来收益:6.19%[47] 3. **DELTAROA因子**: - 近一周收益:0.63%[36] - 近一月收益:1.57%[36] - 今年以来收益:8.06%[36] 4. **非流动性冲击因子**: - 近一周收益:1.26%[39] - 近一月收益:1.99%[39] - 今年以来收益:12.11%[39] 5. **预期PEG因子**: - 近一周收益:0.75%[24] - 近一月收益:2.07%[24] - 今年以来收益:7.23%[24] 6. **一年动量因子**: - 近一周收益:0.84%[28] - 近一月收益:2.33%[28] - 今年以来收益:3.83%[28] 附录 - **MFE组合构建方式**:通过线性规划最大化单因子暴露,控制行业、风格等约束[63] - 目标函数:$$max\ f^{T}w$$[63] - 约束条件:风格偏离、行业偏离、换手率等[63]
机器学习因子选股月报(2025年7月)-20250630
西南证券· 2025-06-30 12:35
量化模型与构建方式 1. **模型名称:GAN_GRU模型** - **模型构建思路**:结合生成式对抗网络(GAN)和门控循环单元(GRU)的深度学习模型,通过GAN处理量价时序特征后,利用GRU进行时序编码生成选股因子[9][10] - **模型具体构建过程**: 1. **数据输入**:18个量价特征(如收盘价、成交量等),采样形状为40*18(过去40天的特征)[13][14] 2. **GAN部分**: - 生成器(LSTM):输入原始量价特征(40,18),输出生成的特征(40,18)[29][32] - 判别器(CNN):处理二维时序特征,损失函数为: $$L_{D}=-\mathbb{E}_{x\sim P_{d a t a}(x)}[\log\!D(x)]-\mathbb{E}_{z\sim P_{z}(z)}[\log(1-D(G(z)))]$$ 生成器损失函数为: $$L_{G}\,=\,-\mathbb{E}_{z\sim P_{z}(z)}[\log(D(G(z)))]$$[20][23] 3. **GRU部分**:两层GRU(128,128) + MLP(256,64,64),输出预测收益pRet作为因子[18] 4. **训练细节**:半年度滚动训练,Adam优化器,学习率1e-4,损失函数为IC[14] - **模型评价**:通过对抗训练提升特征生成能力,保留时序性质的同时增强特征逼真度[26][29] --- 模型的回测效果 1. **GAN_GRU模型** - **IC均值**:11.54%(全A股,2019-2025)[36] - **ICIR**:0.89[37] - **年化超额收益率**:24.95%[37] - **信息比率(IR)**:1.56[37] - **最大回撤**:27.29%[37] - **最新一期IC**:8.34%(2025年6月)[36] - **行业表现**:建筑装饰、公用事业等行业IC均值最高(19.68%、17.15%)[37][39] --- 量化因子与构建方式 1. **因子名称:GAN_GRU因子** - **因子构建思路**:基于GAN_GRU模型输出的预测收益pRet,经行业市值中性化+标准化处理后作为选股因子[18][36] - **因子具体构建过程**: 1. 模型输出预测收益pRet 2. 截面标准化+行业市值中性化处理[18] - **因子评价**:在全A股范围内表现稳定,行业适应性较强[36][40] --- 因子的回测效果 1. **GAN_GRU因子** - **多头组合超额收益**: - 家用电器行业最高(7.27%单月,5.90%近一年)[40][41] - 全行业近一年均跑赢基准[40] - **行业IC排名**:建筑装饰(26.10%单月)、基础化工(25.43%)[37][39] - **换手率**:0.83[37] --- 多头组合示例(2025年6月) - **前十个股**:凤凰传媒、川投能源、海尔智家等[42][44] - **行业排名第一个股**:中国电建(建筑装饰)、宝信软件(计算机)等[42]
东方因子周报:Growth风格登顶,EPTTM一年分位点因子表现出色
东方证券· 2025-06-02 18:30
报告行业投资评级 未提及 报告的核心观点 本周市场正收益风格集中在Growth风格上,负收益风格表现在Size风格上;EPTTM一年分位点是中证全指成分股中本周表现最好的因子 [1] 各部分总结 风格因子近期表现 - Growth因子本周正收益2.17%,较上一周0.79%显著提升,市场对成长型股票偏好增强;Trend因子本周收益1.39%,较上一周3.09%有所回落但仍为正收益,市场对趋势投资策略认可较高;Beta因子本周收益0.49%,较上一周 -2.86%显著回升,市场对高Beta股票关注恢复 [9] - Liquidity、SOE、Volatility、Certainty、Value、Cubic size、Size因子本周收益为负,市场对高流动性资产、国有企业股票、高波动性资产、确定性投资策略、价值投资策略、小盘股的关注度减弱 [10] 因子表现监控 因子库 - 指数增强因子库涵盖估值、成长、盈利、分析师预期、景气度、分红、公司治理、PEAD、流动性、波动率、反转与动量等维度 [16] 不同样本空间因子表现 - 沪深300指数选股空间:最近一周分析师认可度等因子表现较好,一个月反转等因子表现较差;最近一月预期PEG等因子表现较好,单季净利同比增速环比变化等因子表现较差 [6][21] - 中证500指数选股空间:最近一周单季营收同比增速等因子表现较好,一年动量等因子表现较差;最近一月一个月反转等因子表现较好,一个月UMR等因子表现较差 [6][25] - 中证800指数选股空间:最近一周单季EP等因子表现较好,一个月反转等因子表现较差;最近一月预期PEG等因子表现较好,单季净利同比增速环比变化等因子表现较差 [6][29] - 中证1000指数选股空间:最近一周EPTTM一年分位点等因子表现较好,盈余公告最低价跳空超额等因子表现较差;最近一月高管薪酬等因子表现较好,公募持股市值等因子表现较差 [6][33] - 国证2000指数选股空间:最近一周预期ROE环比变化等因子表现较好,三个月UMR等因子表现较差;最近一月标准化预期外盈利等因子表现较好,公募持股市值等因子表现较差 [6][38] - 创业板指选股空间:最近一周预期ROE环比变化等因子表现较好,EPTTM一年分位点等因子表现较差;最近一月标准化预期外盈利等因子表现较好,EPTTM一年分位点等因子表现较差 [6][43] - 中证全指选股空间:最近一周EPTTM一年分位点等因子表现较好,一个月反转等因子表现较差;最近一月六个月UMR等因子表现较好,一年动量等因子表现较差 [6][47] 公募基金指数增强产品表现跟踪 沪深300指数增强产品 - 最近一周超额收益最高1.42%,最低 -0.15%,中位数0.37%;前三名分别为申万菱信沪深300优选指数增强A、中欧沪深300指数量化增强A、申万菱信沪深300指数增强A [6][52] 中证500指数增强产品 - 最近一周超额收益最高0.90%,最低 -0.04%,中位数0.33%;前三名分别为华泰紫金中证500指数增强A、平安中证500指数增强A、博时中证500指数增强A [6][56] 中证1000指数增强产品 - 最近一周超额收益最高0.95%,最低 -0.24%,中位数0.18%;前三名分别为汇添富中证1000指数增强A、招商中证1000指数增强A、万家中证1000指数增强A [6][60] 附录 - 构建MFE组合可判断因子在给定基准中是否有效,采用组合优化模型构建单因子MFE组合,目标函数为最大化单因子暴露,约束条件包括风格、行业、个股偏离度、成分股权重占比、个股权重上下限、换手率等 [61]
机器学习因子选股月报(2025年6月)
西南证券· 2025-05-29 14:10
量化模型与构建方式 1. **模型名称**:GAN_GRU模型 - **模型构建思路**:结合生成式对抗网络(GAN)和门控循环单元(GRU)的深度学习模型,通过GAN处理量价时序特征后,利用GRU进行时序编码生成选股因子[9][10]。 - **模型具体构建过程**: 1. **数据输入**:18个量价特征(如收盘价、成交量等),采样形状为40*18(过去40天的特征)[13][14]。 2. **预处理**:时序去极值+标准化,截面标准化[14]。 3. **GAN部分**: - 生成器(G):LSTM结构,输入噪声生成逼真量价特征,损失函数为: $$L_{G}\,=\,-\mathbb{E}_{z\sim P_{z}(z)}[\log(D(G(z)))]$$ - 判别器(D):CNN结构,区分真实与生成特征,损失函数为: $$L_{D}=-\mathbb{E}_{x\sim P_{d a t a}(x)}[\log\!D(x)]-\mathbb{E}_{z\sim P_{z}(z)}[\log(1-D(G(z)))]$$ - 交替训练G和D直至收敛[20][21][23][26]。 4. **GRU部分**:两层GRU(128,128) + MLP(256,64,64),输出预测收益pRet作为因子[18]。 - **模型评价**:有效捕捉量价时序特征的非线性关系,生成因子具有较高区分度[9][18]。 --- 量化因子与构建方式 1. **因子名称**:GAN_GRU因子 - **因子构建思路**:基于GAN_GRU模型输出的预测收益pRet,经行业市值中性化+标准化处理后作为选股因子[18][37]。 - **因子具体构建过程**: 1. 模型训练:半年滚动训练(每年6月30日、12月31日更新),预测未来20日收益[14]。 2. 因子生成:对全A股(剔除ST及上市不足半年股票)输出pRet,中性化处理[14][18]。 --- 模型的回测效果 1. **GAN_GRU模型**: - IC均值:11.57% | ICIR:0.89 | 年化超额收益率:25.01% - 年化波动率:24.02% | IR:1.66 | 最大回撤:27.29%[37][38]。 --- 因子的回测效果 1. **GAN_GRU因子**: - **全A表现**: - 近一年IC均值:11.54% | 最新一期IC:-0.28%[37][38]。 - **行业表现**: - 当期IC前五行业:社会服务(30.15%)、国防军工(28.07%)、银行(25.31%)[39]。 - 近一年超额收益前五行业:石油石化(5.60%)、建筑材料(5.29%)、家用电器(5.06%)[42]。 - **多头组合**: - 当期超额收益最高行业:商贸零售(8.22%)、国防军工(7.15%)[42]。 - 最新前十个股:顺威股份、博深股份、九典制药等[44][48]。
因子选股系列之一一六:NeuralODE:时序动力系统重构下深度学习因子挖掘模型
东方证券· 2025-05-27 16:43
量化模型与构建方式 1. **模型名称**:RNN+Neural ODE+MLP融合模型 **模型构建思路**:通过RNN进行时序数据压缩和降维,利用Neural ODE学习时序演化规律重构数据,最后通过MLP捕捉alpha信息以提升选股鲁棒性[3][6]。 **模型具体构建过程**: - **Encoder层(RNN)**:对时序数据降维和特征提取。 - **Decoder层(Neural Jump SDE)**:拟合时序数据的微分动力系统,重构数据。公式: $$\left\{\begin{array}{l}dx(t)=v(x(t),t)dt+\sigma(x(t),t)dB(t),t\in[0,T]\\ \hat{y}=F(x(T))\\ x(0)=\hat{x}\end{array}\right.$$ 其中$v$和$\sigma$为全连接层加激活函数构成[22][26]。 - **MLP层**:对重构数据提取特征预测收益率。损失函数包括重构损失、KL散度和MSE损失: $$\alpha\log(p(x|\theta))+\beta\operatorname{KL}(N(\mu,e x p(\sigma/2))||N(0,\delta I))+(\hat{\sigma}-y)^{2}$$[31][32] **模型评价**:通过数据重构降低噪声影响,提升样本外泛化能力[3][34]。 2. **模型名称**:Baseline模型(ABCM模型) **模型构建思路**:基于神经网络的alpha和beta因子协同挖掘,生成选股因子[37]。 **模型评价**:作为对比基准,新模型在多头超额和抗风险能力上显著优于Baseline[39][43]。 3. **衍生模型**: - **Model1**:Neural ODE生成因子与Baseline因子等权组合[42]。 - **Model2**:Neural SDE生成因子与Baseline因子等权组合[42]。 - **Model3**:Model1因子剥离短期风险后的残差因子[42]。 --- 量化因子与构建方式 1. **因子名称**:Model1因子 **因子构建思路**:基于RNN+Neural ODE+MLP模型生成的alpha因子,通过数据重构增强稳定性[6][26]。 **因子评价**:多头超额显著提升,换手率降低,抗极端市场能力更强[39][43]。 2. **因子名称**:行业轮动因子 **因子构建思路**:将选股因子按行业流通市值加权聚合,生成行业得分[50][51]。 **因子评价**:Model1因子行业RankIC达12.55%,Top组年化超额25.27%,优于Baseline[52][53]。 --- 模型的回测效果 1. **RNN+Neural ODE+MLP模型(Model1)**: - **RankIC均值**:16.33%(中证全指)[39] - **Top组年化超额**:54.54%[39] - **最大回撤**:-6.63%(2024年)[43] - **换手率**:59.73%(较Baseline下降)[39] 2. **Baseline模型**: - **RankIC均值**:16.39%[39] - **Top组年化超额**:52.63%[39] - **最大回撤**:-5.25%[43] 3. **行业轮动表现**: - **Model1因子**:RankIC 12.55%,Top组超额25.27%[52] - **Baseline因子**:RankIC 12.20%,Top组超额23.05%[52] --- 因子的回测效果 1. **指数增强策略**: - **沪深300指增**:Model1年化超额16.67%,夏普比率3.14[65]。 - **中证500指增**:Model1年化超额21.37%,夏普比率3.21[72]。 - **中证1000指增**:Model1年化超额32.41%,夏普比率4.37[80]。 2. **Top组合绝对收益**: - **Model1**:年化收益43.80%,最大回撤-40.84%[59]。 - **Baseline**:年化收益40.15%,最大回撤-42.41%[59]。 --- 关键公式总结 1. **Neural SDE前向传播**: $$\left\{\begin{array}{l}dx(t)=v(x(t),t)dt+\sigma(x(t),t)dB(t)\\ \hat{y}=F(x(T))\\ x(0)=\hat{x}\end{array}\right.$$[22] 2. **总损失函数**: $$\alpha\log(p(x|\theta))+\beta\operatorname{KL}(N(\mu,e x p(\sigma/2))||N(0,\delta I))+(\hat{\sigma}-y)^{2}$$[32]
基于历史K线形态的因子选股研究
西南证券· 2025-05-27 08:40
报告行业投资评级 未提及 报告的核心观点 - 取消对时间及股票的约束,运用所有股票的历史时间序列量价信息,挖掘有效的K线形态及其适配的量价状态 [1][16] - 结合股票量价状态信息构建K线形态投资框架,可大幅提升预测精度与投资胜率 [2][19] - 不同K线形态有不同的有效性和正负向,结合量价状态可增强其有效性 [4] 根据相关目录分别进行总结 引言 - 前期报告依次探索基于截面与时序相似的量化选股因子,本次取消对时间及股票的约束,挖掘有效K线形态 [15][16] K线形态投资框架 - K线是资金运行轨迹的外化表现,结合股票量价状态信息构建投资框架可提升预测精度与胜率 [2][19] - K线形态识别使用阴阳属性、实体占比等K线特征,结果整理为0 - 1变量 [20][22][23] - 量价状态识别使用成交量的放量与缩量、股票价格的高位和低位,结果整理为0 - 1变量,与K线形态识别结果通过集合相交聚合信息 [24] - 成交量放量与缩量通过相邻两天成交量相对变化定义 [25] - 股票价格相对位置通过当前股票价格在过去N日的历史分位刻画,后续测试选用N = 120 [26][27] K线形态有效性测试 - 回测时间区间为2009年1月5日至2025年5月16日,股票范围为沪深京A股,持仓周期为5日、10日、20日,剔除ST股和近20日平均成交额为0的股票 [29] 有效的K线形态 单K形态 - 大阳线是正向形态,出现后股票未来5日、10日、20日收益率平均值依次为1.84%、2.52%、3.42%,与成交量放量和股票价格低位状态适配时有效性增强 [35][36] - 跳空低开大阴线有较强反转属性,价格低位时为正向形态,高位时为负向形态,结合量价状态可提升有效性 [43][44][45] - 锤头线是负向形态,跳空低开的锤头线有效性提升,股价高位时有效性进一步增强 [49][50][54] - 倒锤线是正向形态,股价底部时有效性增强,底部出现且伴随跳空高开(低)时有效性进一步增强 [60][61][62] - 十字星形态较中性,上十字星倾向负向,下十字星倾向正向,结合量价和开盘状态可构建有效形态 [68][69][70] 双K形态 - 仙人指路是正向形态,出现后股票未来5日、10日、20日收益率平均值依次为0.96%、1.38%、2.35%,与成交量放量和股票价格低位状态适配时有效性增强 [75][79] - 继往开来是正向形态,出现后股票未来5日、10日、20日收益率平均值依次为0.30%、0.70%、1.48%,与股票价格低位状态适配时有效性增强 [84][85] - 射击之星是负向形态,出现后股票未来5日、10日、20日收益率平均值依次为 - 0.66%、 - 0.57%、 - 0.86%,与成交量缩量和股票价格高位状态适配时有效性增强 [92][93] - 阴包阳形态在价格低位时为正向形态,顶部时为负向形态,结合成交量状态可增强有效性 [97][98][100] - 阳包阴是正向形态,出现后股票未来5日、10日、20日收益率平均值依次为0.76%、0.80%、1.40%,与成交量放量和股票价格低位状态适配时有效性增强 [108][109] - 旭日东升是正向形态,出现后股票未来5日、10日、20日收益率平均值依次为1.32%、1.55%、1.92%,与成交量放量和股票价格低位状态适配时有效性增强 [116][117] - 曙光初现是正向形态,出现后股票未来5日、10日、20日收益率平均值依次为0.84%、0.77%、1.72%,与成交量放量和股票价格低位状态适配时有效性增强 [123][124] - 乌云盖顶是负向形态,股票价格高位且成交量缩量时有效性增强 [131][132] - 倾盆大雨是负向形态,股票价格高位时有效性增强 [141][142]
东方因子周报:Liquidity风格登顶,单季ROE因子表现出色-20250511
东方证券· 2025-05-11 18:16
量化模型与构建方式 1. **模型名称**:东方A股因子风险模型(DFQ-2020) - **模型构建思路**:基于风格类风险因子构建多因子模型,用于解释股票收益的风险来源[14] - **模型具体构建过程**: - 包含10类风格因子(如Size、Beta、Trend等),每类因子由多个子因子合成[14] - 因子计算示例: - **Size因子**:总市值对数 - **Beta因子**:贝叶斯压缩后的市场Beta - **Trend因子**:通过指数加权移动平均比率计算,如 $$Trend\_120 = \frac{EWMA(halflife=20)}{EWMA(halflife=120)}$$ - **Volatility因子**:包含5个子因子,如过去243天的标准波动率、FF3特质波动率等[14] - **模型评价**:覆盖市场主要风险维度,因子定义清晰且具有经济逻辑 2. **MFE组合构建模型** - **构建思路**:通过组合优化最大化单因子暴露,同时控制行业、风格等约束[54] - **具体构建过程**: - 目标函数:最大化因子暴露 $$max\ f^{T}w$$ - 约束条件包括: - 风格暴露限制 $$s_{l}\leq X(w-w_{b})\leq s_{h}$$ - 行业偏离限制 $$h_{l}\leq H(w-w_{b})\leq h_{h}$$ - 换手率约束 $$\Sigma|w-w_{0}|\leq to_{h}$$[54] - **模型评价**:更贴近实际投资约束,能有效检验因子在复杂条件下的表现 --- 量化因子与构建方式 1. **因子名称**:单季ROE - **构建思路**:反映公司当期净资产收益率,属于盈利类因子[19] - **具体构建**: $$Quart\_ROE = \frac{单季净利润*2}{期初净资产+期末净资产}$$[19] 2. **因子名称**:一个月反转 - **构建思路**:捕捉短期价格反转效应[19] - **具体构建**:过去20个交易日涨跌幅的相反数 3. **因子名称**:标准化预期外盈利(SUE) - **构建思路**:衡量盈利超预期程度[19] - **具体构建**: $$SUE = \frac{单季实际净利-预期净利}{预期净利标准差}$$ 4. **因子名称**:特异度(IVR_1M) - **构建思路**:反映个股收益脱离市场共同因素的程度[19] - **具体构建**: $$IVR\_1M = 1 - R^2_{FF3}$$(Fama-French三因子回归拟合度) --- 模型回测效果 1. **DFQ-2020风格因子表现**(中证全指样本) - Liquidity因子:近一周收益5.44%,近一年年化33.79%[11] - Size因子:近一周收益-5.96%,历史年化-29.56%[11] 2. **MFE组合模型** - 沪深300增强产品:近一周超额收益中位数-0.07%,最高0.47%[47] - 中证1000增强产品:今年以来超额收益中位数3.28%,最高9.18%[53] --- 因子回测效果 1. **沪深300样本空间** - 预期PEG因子:近一周收益0.88%,近一年年化2.96%[22] - 单季ROE因子:近一周收益0.86%,历史年化4.25%[22] 2. **中证1000样本空间** - 一个月反转因子:近一周收益1.03%,近一年年化-10.62%[32] - 特异度因子:近一周收益0.76%,历史年化4.98%[32] 3. **创业板指样本空间** - 标准化预期外盈利:近一周收益16.09%,近一年年化32.15%[39] - 3个月盈利上下调:近一周收益-3.87%,历史年化-12.03%[39] --- 附录:MFE组合构建细节 - **优化变量**:$w$为股票权重向量,$w_b$为基准权重[54] - **行业约束**:$B_b$为成分股0-1矩阵,限制成分股权重占比[57] - **换仓频率**:月末调仓,双边交易成本0.3%[58]
东方因子周报:Value风格登顶,3个月盈利上下调因子表现出色-2025-03-30
东方证券· 2025-03-30 12:43
量化模型与构建方式 1. **模型名称**:DFQ-FactorVAE-pro - **模型构建思路**:在FactorVAE模型基础上加入特征选择与环境变量模块,提升因子选股能力[5] - **模型具体构建过程**: 1. 特征选择模块通过LASSO回归筛选有效因子: $$ \min_{\beta} \left( \|Y - X\beta\|_2^2 + \lambda \|\beta\|_1 \right) $$ 其中$Y$为收益,$X$为因子矩阵,$\lambda$为惩罚系数 2. 环境变量模块引入宏观经济指标(如PMI、利率)作为条件变量 3. 通过变分自编码器(VAE)学习因子非线性关系: $$ \mathcal{L} = \mathbb{E}_{q(z|x)}[\log p(x|z)] - \beta D_{KL}(q(z|x)\|p(z)) $$ - **模型评价**:相比传统FactorVAE,在因子稳定性和环境适应性上有显著提升 量化因子与构建方式 1. **因子名称**:3个月盈利上下调 - **构建思路**:反映分析师对盈利预期的调整方向与幅度[6][22] - **具体构建**: $$ \text{因子值} = \frac{\text{上调家数} - \text{下调家数}}{\text{覆盖机构总数}} \times \text{调整幅度标准化值} $$ 其中调整幅度使用过去3个月EPS预测变化率的Z-score 2. **因子名称**:UMR(风险调整后动量) - **构建思路**:结合动量效应与波动率调整[19] - **具体构建**: - 计算窗口期(1/3/6/12个月)收益率 - 除以同期波动率: $$ \text{UMR} = \frac{r_t}{\sigma_t} \times \sqrt{T} $$ $T$为时间周期调整系数 3. **因子名称**:DELTAROA - **构建思路**:捕捉资产收益率边际变化[22][29] - **具体构建**: $$ \text{DELTAROA} = \frac{\text{本期ROA} - \text{去年同期ROA}}{\text{资产规模}} $$ 4. **因子名称**:特异度(IVR_1M) - **构建思路**:衡量个股收益脱离市场共同因素的程度[19] - **具体构建**: $$ \text{IVR} = 1 - R^2_{\text{FF3}} $$ 其中$R^2_{\text{FF3}}$为Fama-French三因子模型拟合度 因子回测效果 沪深300样本空间 1. **3个月盈利上下调**: - 最近一周:0.76% - 近一年年化:5.38% - IR:0.84[22] 2. **六个月UMR**: - 最近一月:1.56% - 历史年化:5.37% - 最大回撤:3.2%[22] 中证500样本空间 1. **一个月UMR**: - 最近一周:1.16% - 今年以来:2.37% - 近十年趋势:5.61%[25] 2. **特异度**: - 最近一月:-1.73% - 信息比率:0.48[25] 中证1000样本空间 1. **一个月换手**: - 最近一周:1.89% - 近一年年化:13.64% - 胜率:68%[32] 2. **标准化预期外收入**: - 最近一月:1.20% - 历史年化:5.70%[32] 模型回测效果 1. **DFQ-FactorVAE-pro**: - 中证800增强年化超额:7.2% - 最大回撤:4.5% - 月度胜率:73%[5] 组合构建方法 1. **MFE组合优化模型**: - 目标函数:最大化因子暴露$f^Tw$ - 关键约束: - 风格暴露$s_l \leq X(w-w_b) \leq s_h$ - 行业中性$h_l \leq H(w-w_b) \leq h_h$ - 换手率$\Sigma|w-w_0| \leq to_h$[56] - 优化方法:线性规划求解
【金工】市场小市值风格明显,定增组合超额收益显著——量化组合跟踪周报20250301(祁嫣然/张威)
光大证券研究· 2025-03-02 21:12
点击注册小程序 特别申明: 本订阅号中所涉及的证券研究信息由光大证券研究所编写,仅面向光大证券专业投资者客户,用作新媒体形势下研究 信息和研究观点的沟通交流。非光大证券专业投资者客户,请勿订阅、接收或使用本订阅号中的任何信息。本订阅号 难以设置访问权限,若给您造成不便,敬请谅解。光大证券研究所不会因关注、收到或阅读本订阅号推送内容而视相 关人员为光大证券的客户。 报告摘要 沪深300股票池中,本周表现较好的因子有动量调整大单 (2.40%)、大单净流入 (2.32%)、动量调整小单 (1.82%)。表现较差的因子有单季度总资产毛利率(-2.60%)、总资产增长率(-2.48%)、单季度ROA (-2.14%)。 中证500股票池中,本周表现较好的因子有动量调整小单(2.99%)、市盈率因子(2.89%)、市净率因子 (2.75%)。表现较差的因子有5日成交量的标准差(-0.57%)、净利润率TTM (-0.48%)、营业利润率TTM (-0.27%)。 流动性1500股票池中,本周表现较好的因子有市盈率因子(2.79%)、市盈率TTM倒数(2.10%)、日内波动率 与成交金额的相关性 (1.89%)。表现较差 ...