超导材料
搜索文档
未知机构:天风通信永鼎股份业绩预告点评公司主业经营稳健光通信超导双轮驱动发-20260128
未知机构· 2026-01-28 10:00
涉及的行业与公司 * **公司**:永鼎股份 [1] * **行业**:光通信行业、超导材料行业 [1] 核心观点与论据 * **公司主业经营稳健,呈现“光通信+超导”双轮驱动发展格局** [1] * **2025年业绩预告显示归母净利润大幅增长,但主要由非经常性投资收益驱动**:预计2025年归母净利润为2亿-3亿元,同比增长226%-388%,主要原因是公司对联营企业上海东昌投资权益法确认的投资收益约2.5亿元 [1] * **2025年第四季度主业经营业绩略低于预期**:预计Q4归母净利润中值为-0.79亿元 [1] * **光通信业务(子公司鼎芯光电/鼎芯科技)进展积极**: * 全面布局EML、CW光源等光芯片产品,并采用IDM模式 [1][2] * CW光源产品已获得明确客户并签署保供协议,预计后续持续放量 [2] * 公司正加大客户拓展力度,后续有望获得大客户订单 [2] * 公司紧跟客户需求持续扩产,预计2026年产能有望翻倍 [2] * 近期通过增资扩股引入外部投资者,其中剑桥科技增资500万元,持股比例为0.5525% [2] * **超导业务(子公司东部超导)具备前瞻性布局**: * 前瞻布局高温超导带材,采用国内独有的IBAD+MOCVD技术路线,产品性能优异 [2] * 产品应用领域广泛,包括可控核聚变、超导感应加热、磁拉单晶、医学等 [2] * 公司是国内为数不多可以量产超导带材的公司,后续计划持续扩产以满足下游需求的快速增长 [2] * **行业层面存在积极驱动因素**: * 海外光模块需求强劲,光芯片由于扩产周期长存在供需缺口,公司依托产品自研和IDM模式有望持续取得订单 [2] * 可控核聚变领域被国家“十五五”规划列为战略发展方向,公司布局的高温超导带材有望受益于该领域的高速发展 [2] 其他重要内容 * **业绩预告数据为初步核算,存在不确定性**:对联营企业的投资收益约2.5亿元标注为“未经审计,最终以审计数据为准” [1] * **研究机构观点**:认为公司未来成长空间广阔,建议投资者重点关注 [2]
国际高温超导带材战略研究报告发布
中国经济网· 2026-01-27 14:15
报告发布与意义 - 中国科学院物理研究所于1月26日正式对外发布《2025年度REBCO高温超导带材战略研究报告》[1] - 该报告是国际首个聚焦高温超导带材发展的战略研究报告[1] - 报告系统梳理了稀土钡铜氧(REBCO)高温超导带材在全球的研发、产业化与应用现状[1] - 报告首次凝练提出了阻碍该领域发展的“十大关键科学技术问题”[1] - 报告为实现高温超导材料的大规模应用提供了清晰的路线图[1] 材料特性与应用前景 - 超导材料具有零电阻和完全抗磁性等非凡特性,被视为21世纪极具战略价值的前沿材料[1] - 材料在能源、交通、医疗、科研等多个关键领域有广阔应用前景,是推动未来技术突破的重要基石[1] - REBCO高温超导带材自2006年实现商业化制备以来,在多个领域展现出重要应用潜力[1] - 其应用主要集中在两大方向:电力系统与磁体系统[1] - 在电力系统中,REBCO带材可用于制造超导电缆和故障限流器等超导电力装备[2] - 超导电缆能在液氮温度下实现大电流、低损耗输电,尤其适合城市电网升级改造[2] - 故障限流器能在电网短路时迅速限制电流,保障电网安全[2] - 在磁体系统中,REBCO带材凭借其强磁场下载流能力强的特点,可应用于核聚变装置、高场磁共振成像、超导电机等重要设备[2] 当前产业现状与挑战 - REBCO高温超导带材已进入商业化初期,但性能仍有很大提升空间[2] - 当前高温超导带材是由合金基带、缓冲层、超导层和保护层组成的多层复合结构[2] - 未来发展的关键在于系统推进材料、工艺与应用的协同创新[2] - 针对超导层,需优化内部结构以增强其在磁场中的载流能力[2] - 围绕基带、缓冲层和保护层,要着力改善强度与韧性的平衡、结构传导效率以及层间界面结合等问题[2] - 必须发展可规模化、一致性高的制备工艺,实现带材的低成本、批量稳定生产,以满足各领域日益增长的规模化应用需求[2] 十大关键科学技术问题 - 如何大幅提升合金基带的屈服强度与疲劳耐受性以满足高场应用需求[3] - 如何突破各缓冲层材料在电学和热学性能方面的固有局限性[3] - 在极薄厚度条件下如何实现IBAD织构的稳定性和长带均匀性控制[3] - 高速沉积环境下,不同帽子层的生长动力学及调控机理是什么[3] - 如何提升帽子层与超导层之间的结合强度和力-电综合性能[3] - 如何建立针对不同工艺的钉扎中心形成理论,定制化适配不同应用场景的高性能REBCO带材[3] - 如何阐明“激光参数-等离子体羽辉-薄膜生长”的跨尺度物理机制,并构建可预测、可调控的工艺模型[3] - 如何提升MOCVD系统的稳定性以保证带材性能的一致性[3] - 如何厘清MOCVD制备中的多物理场耦合机制以提高超导层厚度和成分均匀性[3] - 如何通过新材料与新结构突破当前REBCO带材的成本与性能瓶颈[3] - 十大关键问题源自对产业链从研发到应用的全链条深入调研,通过逐层剖析REBCO带材结构找出性能瓶颈与层间匹配难点[3] - 对照核聚变、超导电网等国家重大需求,分析现有材料与实际应用之间的差距,明确了从“能用”到“好用”所需攻克的具体方向[3]
【新华社】中国科学院报告提出高温超导带材领域十大关键科学技术问题
新华社· 2026-01-27 10:36
行业战略报告发布 - 中国科学院物理研究所于1月26日发布了《2025年度REBCO高温超导带材战略研究报告》[1] - 报告旨在为实现高温超导材料的大规模应用提供指引[1] 高温超导材料概述 - 超导材料具有零电流阻力、能抵抗磁铁磁力的特性[1] - 以稀土钡铜氧(REBCO)为代表的高温超导材料是当前超导技术研究和应用的核心材料之一[1] - 该材料在可控核聚变装置、磁共振成像、超导电缆等领域应用潜力巨大[1] 材料现状与挑战 - REBCO高温超导带材已实现商业化制备[1] - 但其由多层复合结构组成,工艺复杂、批量生产稳定性差,性能仍有很大提升空间[1] - 报告通过逐层剖析材料结构,提出了十大关键科学技术问题[1] 关键科学技术问题方向 - 报告提出的问题源自对产业链从研发到应用的深入调研[1] - 具体方向包括:如何大幅提升合金基带的屈服强度与疲劳耐受性以满足高场应用需求[1] - 具体方向包括:如何突破各缓冲层材料在电学和热学性能方面的固有局限性[1] 报告目标与展望 - 报告希望通过揭示核心科学技术问题,汇聚产学研用各界创新力量[1] - 目标是协同突破,推动高温超导材料走向大规模应用[1]
【中国新闻网】中国发布国际首个聚焦高温超导带材发展战略研究报告
中国新闻网· 2026-01-27 10:24
报告发布与定位 - 中国科学院物理研究所于1月26日在北京正式发布《2025年度REBCO(稀土钡铜氧)高温超导带材战略研究报告》[1] - 该报告是国际首个聚焦高温超导带材发展的战略研究报告,系统梳理了全球研发、产业化与应用现状[1] - 报告首次凝练提出该领域面临的十大关键科学技术问题,为实现材料大规模应用提供了清晰路线图[1] 材料特性与应用潜力 - 超导材料具有零电阻和完全抗磁性,被视为21世纪极具战略价值的前沿材料,在能源、交通、医疗、科研等多个关键领域有广阔应用前景[3] - 传统超导材料需在极低的液氦温度(-269℃)下工作,成本高且依赖稀缺氦资源,应用受限[3] - REBCO高温超导材料的临界温度高于液氮温度(-196℃),制冷成本大幅降低,且在承载电流和抵抗磁场方面性能显著提升[3] - REBCO带材自2006年实现商业化制备以来,在磁约束核聚变、高端医疗设备、大科学装置及超导电力设备等多个领域展现出重要应用潜力[3] - 应用主要集中在电力系统(如超导电缆、故障限流器)与磁体系统(如核聚变装置、高场磁共振成像、超导电机)两大方向[3][4] 关键科学技术问题 - 报告首次系统凝练出阻碍REBCO带材大规模应用的十大关键科学技术问题,贯穿基带、缓冲层到超导功能层的整个材料体系[5] - 问题涉及提升合金基带的屈服强度与疲劳耐受性[5] - 问题涉及突破各缓冲层材料在电学和热学性能方面的固有局限性[5] - 问题涉及在极薄厚度下实现离子束辅助沉积织构的稳定性和长带均匀性控制[5] - 问题涉及阐明高速沉积环境下不同帽子层的生长动力学及调控机理[5] - 问题涉及提升帽子层与超导层之间的结合强度和力-电综合性能[5] - 问题涉及建立针对不同工艺的钉扎中心形成理论,以定制化适配不同应用场景[5] - 问题涉及阐明“激光参数-等离子体羽辉-薄膜生长”的跨尺度物理机制,并构建可预测、可调控的工艺模型[5] - 问题涉及提升金属有机化合物化学气相沉积法系统的稳定性以保证带材性能一致性[5] - 问题涉及厘清金属有机化合物化学气相沉积法制备中的多物理场耦合机制以提高超导层厚度和成分均匀性[5] - 问题涉及通过新材料与新结构突破当前REBCO带材的成本与性能瓶颈[5] - 十大问题源自对产业链从研发到应用的全链条深入调研,旨在明确从“能用”到“好用”所需攻克的具体方向[5][6] 行业现状与未来发展方向 - REBCO高温超导带材已进入商业化初期,但性能仍有很大提升空间[7] - 当前高温超导带材是由合金基带、缓冲层、超导层和保护层组成的多层复合结构[7] - 未来发展的关键在于系统推进材料、工艺与应用的协同创新[7] - 针对超导层,需优化内部结构以增强其在磁场中的载流能力[7] - 围绕基带、缓冲层和保护层,要着力改善强度与韧性的平衡、结构传导效率以及层间界面结合等问题[7] - 必须发展可规模化、一致性高的制备工艺,实现带材的低成本、批量稳定生产,以满足各领域日益增长的规模化应用需求[7] - 报告旨在为中国高温超导领域明确关键攻关方向与实施路径,推动实现从跟随到并行、最终迈向引领的跨越[7]
【央视新闻】首提稀土钡铜氧高温超导带材“十大关键科学技术问题” 中国科学院发布报告
央视新闻· 2026-01-27 10:24
报告发布与意义 - 中国科学院物理研究所于1月26日正式发布《2025年度REBCO高温超导带材战略研究报告》[2] - 该报告是国际首个聚焦高温超导带材发展的战略研究报告[2] - 报告系统梳理了稀土钡铜氧高温超导带材在全球的研发、产业化与应用现状[2] - 报告首次凝练提出了阻碍该领域发展的“十大关键科学技术问题”[2][4] - 报告为实现高温超导材料的大规模应用提供了清晰的路线图[2] 高温超导材料概述与优势 - 超导材料具有零电阻和完全抗磁性等非凡特性,被视为21世纪极具战略价值的前沿材料[2] - 传统超导材料需在-269℃的液氦温度下工作,制冷成本高且依赖稀缺氦资源,应用受限[2] - 稀土钡铜氧高温超导材料的临界温度高于-196℃的液氮温度,制冷成本大幅降低[3] - 稀土钡铜氧带材在承载电流和抵抗磁场方面的性能显著提升[3] - 该材料自2006年实现商业化制备以来,已展现出重要应用潜力[3] 主要应用方向与现状 - 应用主要集中在两大方向:电力系统与磁体系统[3] - 在电力系统中,可用于制造超导电缆和故障限流器[3] - 超导电缆适合城市电网升级改造,能实现大电流、低损耗输电[3] - 故障限流器能在电网短路时迅速限制电流,保障电网安全[3] - 在磁体系统中,可应用于核聚变装置、高场磁共振成像、超导电机等重要设备[3] - 这些磁体应用对材料的机械强度和稳定性提出了很高要求[3] 当前性能瓶颈与发展关键 - 高温超导带材已进入商业化初期,但性能仍有很大提升空间[4] - 带材是由合金基带、缓冲层、超导层和保护层组成的多层复合结构[4] - 未来发展关键在于系统推进材料、工艺与应用的协同创新[4] - 针对超导层,需优化内部结构以增强其在磁场中的载流能力[4] - 围绕基带、缓冲层和保护层,需改善强度与韧性平衡、结构传导效率及层间界面结合[4] - 必须发展可规模化、一致性高的制备工艺,实现低成本、批量稳定生产[4] - 随着应用场景需求细化,发展“按需定制”的超导带材将成为推动规模化应用的关键[3] 十大关键问题的提出与意义 - 十大关键科学技术问题贯穿从基带、缓冲层到超导功能层的整个材料体系[4] - 这些问题是连接基础研究与工程应用的“枢纽”[4] - 攻克它们需要材料、物理、工程等多学科的深度协同[4] - 问题源自对产业链从研发到应用的全链条深入调研[5] - 通过逐层剖析带材结构,找出每层材料的性能瓶颈与层间匹配难点[5] - 对照核聚变、超导电网等国家重大需求,分析现有材料与实际应用之间的差距[5] - 从而明确了从“能用”到“好用”所需攻克的具体方向[5]
明确稀土钡铜氧从“能用”到“好用”路线图
科技日报· 2026-01-27 10:24
报告发布与战略意义 - 中国科学院物理研究所正式发布国际首个聚焦REBCO高温超导带材发展的《2025年度REBCO高温超导带材战略研究报告》[1] - 报告首次凝练提出该领域亟待解决的“十大关键科学技术问题”为推动材料大规模应用提供清晰路线图[1] - 报告旨在为中国高温超导领域明确关键攻关方向与实施路径 推动从跟随到并行最终迈向引领的跨越[3] 材料特性与行业价值 - 超导材料具有零电阻和完全抗磁性的独特性质被视为21世纪极具战略价值的前沿材料[1] - 传统超导材料需在极低的液氦温度(-269℃)下工作 制冷成本高昂且依赖稀缺氦资源 限制其大规模应用[1] - REBCO高温超导材料的临界温度高于液氮温区(-196℃) 制冷成本显著降低 同时在高磁场下仍能保持优异的电流承载能力[1] 应用现状与主要方向 - 自2006年实现商业化制备以来 REBCO带材已在磁约束核聚变 高端医疗成像 大型科研装置及超导电力设备等多个重要领域展现出巨大潜力[2] - 应用主要集中于两大方向 电力系统与磁体系统[2] - 在电力系统中 REBCO带材主要用于超导电缆和故障限流器 适用于城市电网升级与扩容及提升电网安全性与稳定性[2] - 在磁体系统中 REBCO带材基于其强磁场下载流能力强的优势 可应用于核聚变装置 高场磁共振成像 超导电机等高端装备[2] 性能瓶颈与发展需求 - REBCO带材是一种由合金基带 缓冲层 超导层和稳定层组成的多层复合结构 整体性能仍有很大提升空间[2] - 未来发展需系统推进材料 工艺与应用的协同创新[2] - 针对超导层 需优化内部结构以增强其在磁场中的载流能力[3] - 围绕基带 缓冲层和保护层 需着力改善强度与韧性的平衡 结构传导效率以及层间界面结合等问题[3] - 必须发展可规模化 一致性高的制备工艺 实现带材的低成本 批量稳定生产 以满足各领域日益增长的规模化应用需求[3] 关键问题与攻关方向 - 十大关键科学技术问题源自从研发到应用的全链条深入调研 通过逐层剖析REBCO带材结构找出每一层材料的性能瓶颈与层间匹配难点[3] - 对照核聚变 超导电网等国家重大需求 分析现有材料与实际应用之间的差距 明确了从“能用”到“好用”所需攻克的具体方向[3]
中科院报告提出高温超导带材领域十大关键科学技术问题
新浪财经· 2026-01-27 08:11
行业动态与战略发布 - 中国科学院物理研究所于1月26日发布了《2025年度REBCO高温超导带材战略研究报告》[1] - 该报告旨在为实现高温超导材料的大规模应用提供指引[1] 材料特性与应用前景 - 超导材料具有零电流阻力、能抵抗磁铁磁力的特性[1] - 以稀土钡铜氧(REBCO)为代表的高温超导材料是当前超导技术研究和应用的核心材料之一[1] - 该材料在可控核聚变装置、磁共振成像、超导电缆等领域应用潜力巨大[1] 当前技术挑战与瓶颈 - REBCO高温超导带材已实现商业化制备,但由多层复合结构组成,工艺复杂、批量生产稳定性差[1] - 报告提出了该领域面临的十大关键科学技术问题[1] - 具体挑战包括:如何大幅提升合金基带的屈服强度与疲劳耐受性以满足高场应用需求[1] - 具体挑战包括:如何突破各缓冲层材料在电学和热学性能方面的固有局限性[1] - 报告通过逐层剖析REBCO带材结构,找出每一层材料需攻克的具体方向[1] 行业协同与发展目标 - 报告提出的十大关键问题源自对产业链从研发到应用的深入调研[1] - 行业希望通过揭示核心科学技术问题,汇聚产学研用各界创新力量,协同突破[1] - 最终目标是推动高温超导材料走向大规模应用[1]
中国科学院报告提出高温超导带材领域十大关键科学技术问题
新华社· 2026-01-26 18:41
行业动态与战略发布 - 中国科学院物理研究所于1月26日发布了《2025年度REBCO高温超导带材战略研究报告》[1] - 报告旨在为实现高温超导材料的大规模应用提供指引[1] - 报告提出了该领域面临的十大关键科学技术问题[1] 材料特性与应用潜力 - 超导材料具有零电流阻力、能抵抗磁铁磁力的特性[1] - 以稀土钡铜氧(REBCO)为代表的高温超导材料是当前超导技术研究和应用的核心材料之一[1] - 该材料在可控核聚变装置、磁共振成像、超导电缆等领域应用潜力巨大[1] - REBCO高温超导带材因制备成本相对较低而受到重视[1] 当前技术挑战与瓶颈 - REBCO高温超导带材已实现商业化制备[1] - 但其由多层复合结构组成,工艺复杂、批量生产稳定性差,性能仍有很大提升空间[1] - 报告通过逐层剖析REBCO带材结构,找出每一层材料需攻克的具体方向[1] - 具体挑战包括如何大幅提升合金基带的屈服强度与疲劳耐受性以满足高场应用需求[1] - 另一挑战是如何突破各缓冲层材料在电学和热学性能方面的固有局限性[1] 研究目标与行业协同 - 报告提出的十大关键问题源自对产业链从研发到应用的深入调研[1] - 中国科学院院士方忠表示,希望通过揭示这些核心科学技术问题,汇聚产学研用各界创新力量,协同突破[1] - 最终目标是推动高温超导材料走向大规模应用[1]
中国发布国际首个聚焦高温超导带材发展战略研究报告
中国新闻网· 2026-01-26 16:44
报告发布与核心意义 - 中国科学院物理研究所于1月26日正式发布《2025年度REBCO高温超导带材战略研究报告》,这是国际首个聚焦该领域发展的战略研究报告 [1] - 报告系统梳理了全球REBCO高温超导带材的研发、产业化与应用现状,并首次凝练提出该领域面临的十大关键科学技术问题,为实现大规模应用提供了清晰路线图 [2] 高温超导材料特性与应用潜力 - 超导材料具有零电阻和完全抗磁性等特性,被视为21世纪极具战略价值的前沿材料,在能源、交通、医疗、科研等多个关键领域有广阔应用前景 [3] - 传统超导材料需在极低的液氦温度(-269℃)下工作,成本高且依赖稀缺氦资源,应用长期局限于大型科研装置和高端医疗设备等少数领域 [3] - REBCO高温超导材料的临界温度高于液氮温度(-196℃),制冷成本大幅降低,同时在承载电流和抵抗磁场方面性能显著提升,为更大规模应用奠定了基础 [5] - 自2006年实现商业化制备以来,REBCO带材在磁约束核聚变、高端医疗设备、大科学装置及超导电力设备等多个领域展现出重要应用潜力 [5] 主要应用方向与技术重点 - 应用主要集中在电力系统与磁体系统两大方向 [5] - 在电力系统中,REBCO带材可用于制造超导电缆和故障限流器等装备,超导电缆适合城市电网升级改造,故障限流器能保障电网安全,当前技术重点在于提高带材载流能力、保证长距离性能均匀、降低损耗并控制成本 [5] - 在磁体系统中,REBCO带材可应用于核聚变装置、高场磁共振成像、超导电机等重要设备,这些应用对材料的机械强度和稳定性要求很高 [5] - 未来,随着应用场景需求细化,发展“按需定制”的超导带材将成为推动其规模化应用的关键 [5] 十大关键科学技术问题 - 报告首次系统凝练出阻碍REBCO带材走向大规模应用的十大关键科学技术问题,贯穿基带、缓冲层到超导功能层的整个材料体系 [6] - 问题一:如何大幅提升合金基带的屈服强度与疲劳耐受性以满足高场应用需求 [6] - 问题二:如何突破各缓冲层材料在电学和热学性能方面的固有局限性 [6] - 问题三:在极薄厚度条件下如何实现离子束辅助沉积织构的稳定性和长带均匀性控制 [6] - 问题四:高速沉积环境下,不同帽子层的生长动力学及调控机理是什么 [6] - 问题五:如何提升帽子层与超导层之间的结合强度和力-电综合性能 [6] - 问题六:如何建立针对不同工艺的钉扎中心形成理论,定制化适配不同应用场景的高性能REBCO带材 [6] - 问题七:如何阐明“激光参数-等离子体羽辉-薄膜生长”的跨尺度物理机制,并构建可预测、可调控的工艺模型 [6] - 问题八:如何提升金属有机化合物化学气相沉积法系统的稳定性以保证带材性能的一致性 [6] - 问题九:如何厘清金属有机化合物化学气相沉积法制备中的多物理场耦合机制以提高超导层厚度和成分均匀性 [6] - 问题十:如何通过新材料与新结构突破当前REBCO带材的成本与性能瓶颈 [7] - 这十大问题源自对产业链从研发到应用的全链条深入调研,通过逐层剖析材料结构找出性能瓶颈与层间匹配难点,并对照核聚变、超导电网等国家重大需求,明确了从“能用”到“好用”所需攻克的具体方向 [7] 行业现状与未来攻关方向 - REBCO高温超导带材已进入商业化初期,但性能仍有很大提升空间,当前带材是由合金基带、缓冲层、超导层和保护层组成的多层复合结构 [8] - 未来发展的关键在于系统推进材料、工艺与应用的协同创新 [9] - 针对超导层,需优化内部结构以增强其在磁场中的载流能力 [9] - 围绕基带、缓冲层和保护层,要着力改善强度与韧性的平衡、结构传导效率以及层间界面结合等问题 [9] - 必须发展可规模化、一致性高的制备工艺,实现带材的低成本、批量稳定生产,以满足各领域日益增长的规模化应用需求 [9] - 报告的发布为中国高温超导领域明确了关键攻关方向与实施路径,旨在汇聚创新力量,推动中国在该领域实现从跟随到并行、最终迈向引领的跨越 [11]
国际首个!中国科学院发布报告,提供高温超导材料大规模应用路线图
中国能源报· 2026-01-26 16:43
报告发布与战略意义 - 中国科学院物理研究所于1月26日正式发布《2025年度REBCO高温超导带材战略研究报告》,这是国际首个聚焦该领域发展的战略研究报告 [1] - 报告系统梳理了稀土钡铜氧高温超导带材在全球的研发、产业化与应用现状,并首次凝练提出该领域面临的“十大关键科学技术问题” [1] - 报告为实现高温超导材料的大规模应用提供了清晰的路线图 [1] 高温超导材料特性与应用优势 - 超导材料具有零电阻和完全抗磁性等特性,被视为21世纪极具战略价值的前沿材料,在能源、交通、医疗、科研等多个关键领域有广阔应用前景 [3] - 传统超导材料需在极低的液氦温度(-269℃)下工作,制冷成本高且依赖稀缺氦资源,应用长期局限于大型科研装置和高端医疗设备等少数领域 [3] - 稀土钡铜氧高温超导材料的临界温度高于液氮温度(-196℃),制冷成本大幅降低,同时在承载电流和抵抗磁场方面性能显著提升,为更大规模应用奠定了基础 [3] - 自2006年实现商业化制备以来,该材料在磁约束核聚变、高端医疗设备、大科学装置及超导电力设备等多个领域展现出重要应用潜力 [3] 主要应用方向:电力系统 - 在电力系统中,稀土钡铜氧带材可用于制造超导电缆和故障限流器 [3] - 超导电缆能在液氮温度下实现大电流、低损耗输电,尤其适合城市电网升级改造 [3] - 故障限流器能在电网短路时迅速限制电流,保障电网安全 [3] - 当前技术重点在于继续提高带材的载流能力、保证长距离性能均匀、降低损耗并控制成本 [3] 主要应用方向:磁体系统 - 在磁体系统中,该带材凭借其强磁场下载流能力强的特点,可应用于核聚变装置、高场磁共振成像、超导电机等重要设备 [4] - 这些应用对材料的机械强度和稳定性提出了很高要求 [4] - 未来,随着不同应用场景对材料性能的需求日益细化,发展“按需定制”的超导带材将成为推动其规模化应用的关键 [4] 材料结构与性能提升方向 - 当前高温超导带材是由合金基带、缓冲层、超导层和保护层组成的多层复合结构 [4] - 未来发展的关键在于系统推进材料、工艺与应用的协同创新 [4] - 针对超导层,需优化内部结构以增强其在磁场中的载流能力 [4] - 围绕基带、缓冲层和保护层,要着力改善强度与韧性的平衡、结构传导效率以及层间界面结合等问题 [4] - 必须发展可规模化、一致性高的制备工艺,实现带材的低成本、批量稳定生产,以满足各领域日益增长的规模化应用需求 [4] 十大关键科学技术问题 - 报告首次系统凝练出阻碍稀土钡铜氧带材走向大规模应用的十大关键科学技术问题 [4] - 这些问题贯穿基带、缓冲层到超导功能层的整个材料体系,是连接基础研究与工程应用的“枢纽” [4] - 攻克它们需要材料、物理、工程等多学科的深度协同 [4] - 十大关键问题源自对产业链从研发到应用的全链条深入调研 [5] - 通过逐层剖析带材结构,找出每一层材料的性能瓶颈与层间匹配难点,同时对照核聚变、超导电网等国家重大需求,分析现有材料与实际应用之间的差距 [5] - 此举明确了从“能用”到“好用”所需攻克的具体方向 [5]