High NA EUV光刻机

搜索文档
1.4nm芯片,贵得吓人
虎嗅APP· 2025-06-03 17:58
台积电1.4纳米制程技术 - 台积电A14(1.4纳米级)制造技术将在性能、功耗和晶体管密度方面显著优于N2(2纳米)工艺,预计2028年投入量产 [5][7] - A14工艺每片晶圆成本高达4.5万美元,较2纳米节点价格上涨50% [5] - A14采用第二代环栅(GAA)纳米片晶体管和NanoFlex Pro技术,速度提高15%,功耗降低30%,逻辑密度是N2的1.23倍 [7][8] - A14不需要售价高达4亿美元的High NA EUV设备,台积电技术团队已找到替代方案 [9] 技术优势与成本挑战 - A14基于第二代GAAFET纳米片晶体管和新标准单元架构,相同功耗下性能提升10%-15%,相同频率下功耗降低25%-30%,晶体管密度提高20%-23% [8] - NanoFlex Pro技术允许设计人员灵活设计产品,实现最佳功率性能优势 [8] - 未来节点光刻成本可能增加高达20%,主要由于光源功率限制和光学元件磨损 [19][20] 潜在客户分析 - 台积电最TOP客户包括英伟达、苹果、联发科、英特尔、高通和博通等 [12] - 英伟达对台积电收入贡献将从2023年5%-10%增长至2025年20%以上,与苹果份额持平 [13] - 苹果2025年2纳米订单规模可能达1万亿新台币(约330亿美元),占台积电营收60% [14] - 谷歌、微软、AWS和META等云服务提供商也可能成为1.4纳米客户 [15] 行业趋势与未来展望 - 1.4纳米晶圆成本已达4.5万美元,但未来仍有上涨空间 [18] - 先进制程节点成本持续攀升,主要受光刻技术、EDA和IP成本上升影响 [19][20] - 半导体行业向更先进制程节点发展,但成本压力日益显著 [5][18]
1.4nm,巅峰之争
半导体行业观察· 2025-05-03 10:05
半导体制造工艺竞争 - 台积电正在从FinFET转向Nanosheet架构,并探索CFET(垂直堆叠NFET和PFET)作为器件微缩方案,2023年展示栅极间距48纳米的CFET晶体管,2024年推出最小CFET反相器[1][3][5] - 台积电在二维沟道材料取得突破,首次展示堆叠纳米片架构中单层沟道的电性能,开发出工作电压1V的反相器[5] - 台积电计划开发新型互连技术,包括铜互连新通孔方案、新型铜阻挡层,以及研究气隙金属材料和插层石墨烯以降低电阻[7] 英特尔14A工艺突破 - 英特尔14A节点(2027年风险生产)宣称功耗降低35%,性能功耗比提升15-20%,晶体管密度比18A提高1.3倍[8][9] - 采用PowerDirect背面供电网络和RibbonFET 2晶体管(四层堆叠纳米片),实现更快切换速度[9] - 推出Turbo Cell技术优化CPU/GPU关键路径,通过调整纳米带宽度和配置提升驱动电流,可在同一模块混合高速与节能单元[10][11][12] High NA EUV光刻技术路线 - 台积电放弃在A14节点使用High NA EUV(成本高2.5倍),采用0.33 NA EUV配合多重曝光保持设计复杂度,计划在A14P节点引入[13][14] - 英特尔坚持在14A节点部分层使用High NA EUV(已安装2台设备),但保留Low NA EUV备用方案,两种方案良率持平且设计规则兼容[15][16][17] - High NA EUV可减少40个工艺步骤降低成本,但需两次曝光完成全光罩,而Low NA EUV需三重曝光[18] 技术战略差异 - 台积电侧重成本控制和技术成熟度,延迟High NA EUV应用[13][14] - 英特尔通过High NA EUV寻求技术领先,但吸取10nm节点教训采用双轨开发策略降低风险[19] - 两家公司在背面供电(英特尔PowerDirect)和晶体管架构(台积电CFET/英特尔RibbonFET)上形成差异化竞争[9][3][19]
EUV光刻,有变!
半导体行业观察· 2025-03-10 09:20
EUV技术发展现状 - EUV技术已突破10nm及以下制程限制,展现出不可替代优势[1] - 英特尔、imec、美光、三星等公司近期宣布重要进展,加速EUV商用应用[1] - High NA EUV光刻机成为2025年SPIE大会讨论焦点[2] 英特尔High NA EUV应用 - 英特尔首家购买High NA EUV光刻机,每台价值3.5亿欧元[3] - 使用两台ASML High-NA Twinscan EXE:5000实现季度处理30,000片晶圆[3] - 高数值孔径机器仅需一次曝光和"个位数"处理步骤,完成传统三次曝光40步骤工作[3] - 正在测试18A制造技术,计划用于14A(1.4nm级)芯片生产[3] High NA EUV技术优势 - ASML Twinscan EXE工具单次曝光实现8nm分辨率,显著优于低NA EUV的13.5nm[4] - 高NA EUV将曝光场减少一半,需要芯片设计变更[4] - 不同芯片制造商对高NA EUV采用策略存在差异[4] imec技术突破 - imec实现单次High NA EUV曝光20nm间距金属线结构,良率达90%以上[5][6] - 测试结构(蛇形和叉形)显示随机缺陷数量较少[6] - 电子测试验证了High NA EUV光刻扫描仪及其生态系统能力[8] - 预计2025-2026年实现High NA EUV大批量生产[8] 美光EUV应用进展 - 美光首次在1γ DRAM节点采用EUV技术,推出16Gb DDR5设备[11] - 新器件功耗降低20%,位密度提高30%[11] - 1γ工艺结合EUV与多重图案化DUV技术[15] - 计划使用1γ技术制造GDDR7、LPDDR5X等产品[15] - 获得日本政府465亿日元补助,计划投资5000亿日元[16] 存储厂商竞争格局 - 三星最早将EUV应用于DRAM生产,14nm工艺采用5个EUV层[14] - SK海力士2021年将EUV应用于10nm级第四代DRAM[14] - 美光加入EUV竞争,三家存储厂商技术路线差异明显[17] - 三星和SK海力士计划2023年下半年引入High NA EUV机器[17] 三星EUV薄膜技术 - 三星决定采购日本三井化学EUV光罩薄膜,价值数十亿韩元[22] - 三井化学纳米管薄膜年产能将达5,000片[22] - 三星自主研发EUV薄膜透射率达88%,但商用需90%以上[23] - 推动EUV薄膜国产化,开发碳纳米管薄膜技术[25] 新兴光刻技术 - 瑞典AlixLabs开发原子层蚀刻间距分割技术(APS)[26] - APS可在硅片上蚀刻5nm以下特征,无需多重图案化[27] - 技术可降低成本和环境影响,beta工具将于2025年推出[27]