多模态
搜索文档
活动回顾 | DeepSeek:AI大模型开启金融数据领域的智能变革
Refinitiv路孚特· 2025-03-24 13:44
引言 - 金融行业作为数据密集型产业,正面临技术与金融深度融合带来的机遇和挑战,人工智能正在重塑行业格局 [1] - DeepSeek作为新一代开源大语言模型,凭借低成本、高效推理能力和技术创新,为金融企业提供强大技术支持,成为金融数据领域的重要变革因素 [1] - LSEG Academy举办网络研讨会,从技术突破、应用场景、合规挑战及未来趋势四方面解析DeepSeek如何推动金融数据领域智能化转型 [1] DeepSeek的核心技术优势 开源战略构建全球生态系统 - DeepSeek采用最宽松的开源策略(MIT License),技术在全球范围内快速传播和应用,吸引众多企业和开发者参与,构建全球开发者生态系统 [3] - 中小企业得以以极低成本引入AI能力,快速实现智能化数字化转型,满足大模型私有化部署诉求 [3] - 开源模式打破大模型技术被闭源公司垄断的格局,使中国在全球AI竞争中占据一席之地 [4] 推理模型打开大语言模型黑盒子 - 传统大模型依赖海量文本训练,相当于"知识存储库",随着训练语料枯竭陷入发展瓶颈 [5] - DeepSeek通过改进强化学习训练方法赋予大模型"主动学习"能力,类似于人类从"死记硬背"到主动"实践技能"的进化 [5] - 模型可通过反复试错学习金融数据分析,逐步提升决策能力,根据市场变化优化自身性能,主动适应复杂场景 [5] - 推理模型的可解释性满足金融行业对透明度的要求,清晰展示分析逻辑,助力风控与合规 [6] 全流程的工程优化 - DeepSeek通过优化混合专家模型(MoE),将普通专家分为共享专家与领域专家,优化分工,减少训练冗余 [7] - 路由优化使训练数据到达正确专家,数据压缩和并行预测技术进一步降低资源消耗,提升效率 [7] - 追求极致的工匠精神使训练成本降至"白菜价",降低私有化部署门槛,推动AI技术普及和行业应用广泛落地 [7] AI在金融行业的应用场景 降本增效:提升运营效率 - AI通过智能客服、编程助手等工具化身数字员工,大幅提升运营效率,降低人力成本 [9] - 伦交所集团采用大模型技术将客服效率提升50%以上,且持续优化中 [9] - 高盛利用大语言模型自动化生成代码,大大缩短业务系统开发时间 [9] 风险管理:优化风控模型 - AI凭借强大语言能力优化风控模型,自动生成风险提示与报告 [10] - 通过对大量数据和非结构化文本的监测、分析和处理,精准识别潜在风险,提供及时风险评估和预警 [10] 投资决策:优化投资策略 - AI通过智能投顾提升研究能力,帮助金融机构优化投资策略,生成个性化投资建议 [11] - 对投资组合进行实时监控和分析,及时调整以应对市场变化,提升投资收益 [11] - 对冲基金TwoSigma利用大模型分析财报、新闻与社交媒体,识别潜在投资机会和风险 [11] 客户服务:提升客户体验 - AI支持个性化推荐和智能交互,根据客户兴趣和需求提供个性化金融产品和服务 [12] - 渣打银行与伦交所集团合作推出全球首个外汇市场AI视频自动生成的获客工具,大大提升财富管理客户满意度 [12] 合规挑战与应对策略 数据隐私与安全风险 - 金融行业高度依赖敏感数据,大模型应用可能加剧隐私泄露风险,如生物识别信息滥用导致身份盗用,钓鱼邮件和深度伪造技术威胁资金安全 [13] - DeepSeek的本地化部署和数据加密技术可保证数据安全性和隐私性,确保金融机构对数据的合法合规使用 [14] 智能时代的用户教育 - 金融投资者、消费者需警惕过度暴露个人信息,如随意授权生物信息可能被用于伪造交易行为 [15] - 金融机构可通过AI反钓鱼模型实时监控,识别异常行为,向用户推送风险提示,形成"技术+教育"双重防线 [15] 未来趋势 智能体(AI Agent) - AI Agent将替代人工,根据预设规则和任务要求自动完成复杂业务操作,提高效率,减少人为错误 [16] - 基本面分析、技术分析和宏观研判可由不同Agent分工协作,最终生成交易信号,改变投研、客服等岗位运作方式 [16] 多模态 - DeepSeek R1模型以文本处理为主,未来可能发展多模态大模型,支持图像(如K线图解读)、语音(如财报电话会实时解读)等场景 [17] Smart data+NLP编程 - 未来大语言模型开发人员可能使用中文等自然语言"编写代码",用少量优质数据训练垂直领域小模型,降低AI开发技术门槛 [18] AI平权与生态重构 - DeepSeek的低成本AI发展路径将持续降低算力成本,使中小机构获得顶级投行分析能力,推动行业竞争战国时代 [19] - 传统金融数据服务商面临业态重构压力,DeepSeek擅长处理非结构化数据,将其转化为结构化洞察,改变传统数据服务模式 [19] 结语 - DeepSeek的横空出世被称为"AI界的斯普特尼克时刻",更像15世纪的古登堡自动印刷机,通过开源与技术创新打破算力垄断,推动AI普惠 [21] - DeepSeek开启AI领域"战国时代",促使金融领域从降本增效走向核心业务重塑,智能体、多模态技术成熟将更深层次重构金融价值链 [21]
AI时代的量化投资与产品策略 ——申万宏源2025资本市场春季策略会
2025-03-12 15:52
纪要涉及的行业和公司 - **行业**:量化投资、ETF、金融、科技、消费、医药、新能源、地产、传媒、通信、半导体、计算机软件、信创、云计算、债券基金等 - **公司**:申万宏源、华安基金、工银、景顺长城、国投、国联安、招商银行、易方达、富国、汇添富、兴全、交银、国泰君安、西部利德、财通、文心、千问、DeepMind、ChatGPT、阿里巴巴、小米、腾讯、美团、理想汽车、康冠科技、三大运营商等 纪要提到的核心观点和论据 量化投资与AI应用 - **AI提升传统多因子处理能力**:传统多因子方法处理因子数量有限,AI算法如树模型、遗传算法等可同时处理数千甚至更多因子,提升信息聚合能力,且能更有效整合利用财务、宏观等数据实现优质投资决策[4]。 - **基本面量化与人工智能策略联系**:两者通过不同路径解决原有简单算法无法处理大量信息问题,基本面量化结合主观判断和宏观或行业模型分析,人工智能策略依赖强大算法处理复杂信息[5]。 - **AI在金融工程设计优势**:AI策略能深度整合财务、宏观经济等信息,提供更精准高效数据分析结果,优化投资组合设计,提高收益率并降低风险[7]。 - **量价因子在算法应用地位**:量价因子数据量大且结构性好,最早被算法应用,传统多因子处理能力有限,AI策略显著提升处理能力,大模型可覆盖更多信息[8]。 - **人工智能策略与传统多因子比较**:AI算法可处理更多特征,能更有效聚合信息和全局分析,在超额收益方面表现优异,不同思维模式下应用AI方法有差异[9]。 - **大模型在金融投资应用前景**:大模型如DeepSeek和ChatGPT有一定主观分析能力,为“主观 + 量化”新范式提供可能,通用能力可涵盖更多数据类型,组合优化可控制市值风险,但能否达专家级水准需验证[11]。 - **AI策略与统计模型区别**:AI策略来自人工智能领域用于特定任务,不限于量价数据,信息聚合和市场全局分析能力更强,小市值股票入选概率问题可通过组合优化控制[12]。 - **资管行业对AI策略接受程度**:基于统计模型的AI策略业绩表现好,已被资管行业逐渐接受并广泛应用于私募基金,推理型大语言模型能否达专家级水平需进一步观察验证[13][14]。 - **推理模型在投资领域应用前景**:推理模型能否在投资领域达专家级水平并降本增效需未来验证,可能改变现有投资方法论,但资管行业接受新方法论需较长时间[15]。 - **统计模型与推理模型区别**:统计模型可回撤但不可解释,推理模型有可解释性但不可直接回撤,涉及使用未来数据问题,还存在AI幻觉和随机数问题需验证[16]。 - **AI对量化投资流程影响**:传统量化方法存在幸存者偏差和过拟合,统计AI阶段大部分探索迭代工作由AI承担,大模型阶段AI能生成代码且达助理级别质量,人力和算力是关键要素[21]。 ETF市场与华安基金策略 - **ETF市场发展现状及趋势**:ETF市场规模突破3.8万亿元,权益ETF达3万亿元,产品超千只,华安基金提供ETF产品及解决方案,关注smart beta策略,提供专业化服务和多种策略组合[22][23]。 - **华安基金资产配置策略**:目标是实现稳健收益,波动小,类似固收加策略,主要投资债券,占比50% - 60%,对标万得偏债混合主动基金指数,历史收益表现好[27]。 - **华安基金行业轮动策略**:根据每月行业变化调整,结合宏观、中观及微观因子,通过AI识别和定性分析选择标的,三月份看好科技、消费及医药领域[3][31]。 - **两会对市场影响分析**:回顾历史两会热点和市场表现,结合择时指标和A股市场温度计模型判断市场位置,目前A股处于温和区间[32]。 基金经理制度与产品分析 - **国内外基金经理制度趋势**:海外富达重视单一明星基金经理,资本集团倾向多基金经理制度;国内多数主动权益基金以单一明星基金经理为主,开始探索多基金经理制度,实现风格互补[38]。 - **多基金经理制度对基金管理效果**:可带来显著效果,有效区分需观察共同管理与单独管理产品相似度及基金经理风格差异,互补形式占比不到三分之一[44][45]。 - **固收加模式与多因子模型**:固收加模式多采用多因子模型,但并非都成功,总结成功模式需考虑资产配置、风险控制和团队协作等因素[47]。 - **权益与固收基金经理互补形式**:体现在对不同类型资产的专业知识和投资策略上,如景顺长城景盈双利项目中董涵和林英杰的分工[48][49]。 - **量化策略在固收加产品应用**:通过多种手段实现不同投资目标,如招商银行量化基金经理使用增强型指数和Alpha Beta策略[51]。 - **指数增强型与主动权益指增型差异**:指数增强型跟踪误差小,主动权益指增型跟踪误差大,加大跟踪误差不一定提高超额收益[54]。 AI科技板块与投资机会 - **AI科技板块对主动权益基金影响**:2025年以来主动权益基金因AI板块高配置战胜基准指数,但2月下旬AI板块回撤,与交易拥挤度高有关[60][61]。 - **AI相关行业投资热度及估值**:投资热度处于历史高位,成交活跃度达2014年以来最高,电子计算机与机械设备估值偏高,传媒与通信相对较低,持仓比例达历史高位[62]。 - **AI相关ETF产品情况**:资金流入和成交活跃程度达相对高位置,仅次于2020年牛市和公募行业大发展时期[65]。 - **AI赛道指数产品选择**:涵盖宽科技、硬件与算力、软件及其他受益产业等细分领域,不同细分赛道表现差异明显,指数产品在估值水平和成分股共振性上有区别[66][67][68]。 - **主动权益基金经理在AI板块表现**:分为均衡稳定配置型、细分赛道专注型以及灵活调整型,均衡稳定配置型选基空间大,有望带来正向投资效应[73]。 - **行业主题轮动策略**:通过行业调整捕捉投资机会,评价参考胜率和每一期行业变化带来的收益表现[76]。 - **机器人板块超额收益原因**:涵盖标的广泛,主动权益布局更纯粹,表现出更高弹性[81]。 全球市场与科技投资 - **科技投资指数选择**:复盘AI发展历程,关注具有自主创新能力且在算力芯片方面有突破性的企业,兼顾上下游产业链新兴标的[82][83]。 - **港股和海外科技大厂竞争情况**:港股竞争集中在互联网头部大厂,海外ChatGPT领先,国内开源特征利于AI研发[85]。 - **海外云厂商增长预期**:2024年KPXLS增速达55%,2025年预期在3000 - 3300亿美元之间,增速约30%[86]。 - **国内与海外市场AI应用优势**:海外有更好的To B端软件付费生态,国内有更强的To C端市场和完整制造产业链优势[87]。 - **AI应用未来发展方向**:AI agent及多模态是重要发展方向,投资需覆盖面广并接受较高波动性[88]。 - **人工智能相关投资标的选择**:关注A股人工智能指数筛选概念及实际含有的公司,从全球视角可关注港股大型互联网巨头和消费电子到造车生态良好的公司、美股M7巨头等[89][92]。 债券市场与基金发展 - **美国债券基金发展路径**:2000年以来经历三次利率环境变化,低利率时期货币基金规模增长,多德弗兰克法案后债券型基金规模翻倍,固收类产品多元化发展[110][111]。 - **美国固收类产品发展情况**:经济复苏和加息通道中,债券基金规模占比相对平稳但绝对数值下降,指数型产品受关注,资管行业向ETF格局转变[112]。 - **后疫情时代美国固收市场变化**:通胀保护类债券基金和浮息债券基金规模显著提高,固收市场指数化进程快且多元化新形态涌现[113]。 - **日本公募债券型基金市场发展历程**:经历快速下降、零利率及负利率阶段,公募债基占比仅6.62%,多数为货币储备基金,曾经辉煌但因低利率走向没落[114][115]。 - **日本与美国债券市场发展差异**:美国债券市场复杂多元化,日本以国债为主,市场格局单一限制产品创新,美国经济增长支持多样化产品发展,日本经济低迷抑制投资者需求[119]。 - **日本投资者海外资产配置**:负利率时代,日本公募市场外币资产配置比例超50%,出海寻求替代资产配置是有效策略[120]。 - **日本权益类资产发展情况**:自2000年以来发展迅速,规模达15万亿日元,得益于高股息、高流动性及税收优惠[121][122]。 - **美国指数型产品对我国借鉴意义**:美国指数型产品成功推动公募市场降费,我国应加紧布局指数型产品,构建多资配置框架,升级固收加策略[123]。 其他重要但是可能被忽略的内容 - **超额收益与风险因子**:超额收益在Kama体系下主要包括PO阿尔法,无法定量解释,通过风险因子贡献可预判策略选择,需区分策略失效与周期变化[19]。 - **量化投资策略数据平衡**:追求最新数据和长期超额收益存在冲突,应关注周期性因素,交易成本可分解[20]。 - **基金名称与投资风格**:很多基金名称不能准确反映实际投资风格,选择投资标的需审查实际持仓情况[55]。 - **主动权益基金表现分析**:跟踪基准并逐步增厚阿尔法,主动权益基金长期表现出色,未来应更重视基准和组合管理策略[59]。 - **ETF交易注意因素**:交易中需注意补券时间差异及汇率因素,对QDII产品成本有影响[105]。 - **全球资金资产配置趋势**:2025年大模型进步使全球资金重新关注国内市场,更倾向估值低且基本面稳健的资产,如香港市场头部互联网企业,南下资金流入港股速度加快[106][108]。 - **公司产品布局特点**:公司在各类产品有布局,提供多种低费率产品,有多种场外产品如云计算指数场外产品[109]。
实测腾讯元宝电脑版:搭载满血版DeepSeek,装上就是AI PC
量子位· 2025-03-02 13:18
产品发布与定位 - 腾讯元宝电脑版正式发布,主打“满血版”概念 [1] - 产品内嵌混元大模型和DeepSeek两大模型 [2] - 核心功能包括深度思考和联网搜索 [3] - 微信公众号资源渠道成为元宝电脑版的差异化特点 [4] 功能实测表现 - 在时效性问题测试中,混元模型用时12秒生成答案,引用7篇微信公众号资料 [8][9][18] - DeepSeek模型生成答案更全面,但思考时间更长(18秒) [19][32][38] - 混元模型在逻辑推理问题中表现简洁明了 [39][45] - 在数值比较测试中,混元模型能准确分析AI常见错误原因并给出正确答案 [49][53] - 产品具备多模态能力,支持图片生成和代码生成 [54][62][67] 市场表现与行业影响 - 腾讯元宝借助DeepSeek实现快速增长,单日下载量在5天内翻倍至10万 [74] - 2月25日单日下载量突破50万,2月日均新增用户超过15万,较1月提升超过3倍 [74][77] - 目前DAU已超过530万,反超Kimi智能助手进入行业TOP3 [78] - Web端单日访问量突破150万,从1月份第九名跃升至第四名,与第五名差距超过170% [80][81] - Web端DAU突破85万,首次进入行业TOP5 [82] - 元宝成为2月唯一有明确增长的AI智能助手产品,新增速度已进入TOP3 [76]
为什么我们对 25 年 AI 极度乐观?| 42章经
42章经· 2025-01-06 05:54
AI市场发展回顾与展望 - 23年AI市场爆发初期,互联网从业者和美元基金迅速涌入,投资焦点集中在大模型公司,OpenAI背景人才备受追捧 [1] - 24年上半年一级市场跌至十年最低谷,大模型公司热度消退,Pre Training模式被质疑,具身智能成为新投资关键词 [2] - 24年9月后市场出现三大变化:融资复苏、多模态模型能力突破(图片/语音/视频生成达GPT-3水平)、AI创二代创始人涌现 [3] 技术演进趋势 - 大模型呈现四大趋势:基础设施化、开源快于闭源、多模型混合方案受青睐、产品价值高于技术 [2] - 多模态进展超预期,视频和3D模型发展速度显著快于语言模型,推理模型o1推动Agent落地 [3] - AI Native产品形态可能通过多模态实现突破,NotebookLM展示跨模态内容组织新范式 [13][14] 投资与创业格局 - 25年市场两极分化加剧:美元基金聚焦出海,人民币基金侧重硬科技/国产替代,初创公司首轮估值达3000-5000万美金 [4][5] - 应用落地成为共识方向,生产力工具类产品主导市场,20-30家应用公司估值超5000万美金,头部ARR达1000万美金 [2][6] - 创始人画像迭代:从互联网转型者变为AI创二代(大厂AI负责人/创业公司联创),认知水平和商业模式显著升级 [3] 商业模式变革 - Prosumer(小B大C)模式验证成功:兼具C端传播属性和B端付费能力,预计25年将出现千万美金ARR公司 [6] - Agent商业模式可能颠覆SaaS:按结果付费替代订阅制,销售体系重构,新创企业比现存SaaS公司更具转型优势 [7][8][9] - Perplexity案例显示搜索平台可能演变为任务完成型Agent,成为AI时代核心入口 [12] 未来重点方向 - Agent领域三大机会:2B场景落地、存量SaaS公司AI化、新商业模式创业公司反攻 [11] - 多模态潜在突破点:视频作为内容输出终局、用户从被动接收转向参与式消费、生产关系变革 [15] - 技术-商业协同效应:AI理解能力+多模态组织将重塑产品形态,如NotebookLM的交互式对话设计 [13][14]
为什么我们对 25 年 AI 极度乐观?| 42章经
42章经· 2025-01-05 21:54
市场趋势与行业动态 - 2023 年 AI 创业投资关键词是大模型,2024 年是具身智能,2025 年将是应用落地[2][4] - 2024 年 9 月后融资市场复苏,各种模态模型能力加强,创始人画像改变,市场进步将延续到 2025 年[4] - 2025 年市场环境将进一步变好,但会更加两极分化,资本方向上美元基金和人民币基金分化,创业融资更倾向背景好的人[4] 投资机会与潜在风险 - 2025 年看好应用落地方向,尤其是生产力工具类产品,预计会出现一批千万美金 ARR 的创业公司[4] - 2025 年看好 Agent 和多模态方向,Agent 主要在 2B 领域落地,新商业模式的 Agent 创业公司将冒头反攻现存 SaaS 企业[4][5] - 多模态可能藏着 AI Native 的答案,未来产品组织形态和使用逻辑可能彻底变化[7] 公司财务表现 - 当下市场约 20 - 30 家应用类公司估值超 5000 万美金,多数应用公司 ARR 年收入为 0,少数找到 PMF 的达 100 万美金 ARR,极少数头部项目达 1000 万美金 ARR[2] 技术发展趋势 - 大模型逐渐成为基础设施,开源进展速度超闭源,实际应用落地偏向多模型混合方案[3] - 推理模型能力提升解锁 Agent 可能性,未来各专业人群、垂直领域都有 Agent 机会[4] 商业模式分析 - Agent 若按结果付费,将对现有 SaaS 公司和模式产生颠覆式变化,销售人员管理和组织模式也会改变[5]
大模型的 5 月:热闹的 30 天和鸿沟边缘
晚点LatePost· 2024-05-29 22:00
技术进展放缓 - 大模型行业在5月密集发布13场发布会和10多款新模型,但技术突破有限,GPT-4o语言能力与GPT-4持平,GPT-5未发布[2][4] - 多模态成为技术焦点,OpenAI、Google、微软推出能处理语音、图像的模型,但产品仍处Demo阶段并引发侵权和隐私问题[4] - GPT-4o在文本处理能力上提升有限:MMLU提升2.5%、HumanEval提升3.6%、MGSM提升2.3%、DROP下降3%[11] 行业竞争格局 - OpenAI和Google将核心模型API价格降低50%,中国公司降价更激进,幻方模型价格比行业低90%以上[8][29] - 字节、阿里、百度、腾讯等大公司跟进降价甚至免费,价格战加剧[8][30] - 降价驱动因素包括技术优化(模型架构调整、分布式推理)、小模型策略、芯片性能提升(英伟达GB200推理性能提高30倍)[31] 商业化挑战 - 红杉资本估算行业GPU投入达500亿美元但收入仅30亿美元,商业化进展慢于互联网等历史技术变革[21] - 微软、Google、Meta计划继续投入数百亿美元购买GPU为未来应用爆发做准备[22] - 杀手级应用探索集中在语音助手(GPT-4o与Siri整合)、搜索引擎(Google AI Overviews)、操作系统(微软Recall)等方向[24][26] 创业公司困境 - Adept、Stability AI、Humane等明星AI创业公司寻求出售,估值在7.5-10亿美元区间[33] - 中国头部大模型公司融资门槛提高,单轮融资达数亿美元,投资方集中于大型科技公司[33] - 应用层创业窗口仍在,秘塔搜索用户增长超500%,但受限于模型能力进展,半年内缺乏创新产品[35][36] 技术发展方向 - 优质训练数据接近耗尽,行业转向多模态和小模型策略[13][18] - GPT-4o实现端到端语音架构,响应时间从秒级降至毫秒级,更接近人类对话体验[13] - 图像理解能力显著提升,在MMMU数据集上得分69.1%,比GPT-4 Turbo提高6个百分点[17][18] 监管动态 - 欧盟通过《人工智能法案》,要求披露训练数据版权和AI生成内容标识[41] - 美国推进限制开源模型出口的法案,众议院外交事务委员会已投票通过[41] - 25位科学家联名呼吁加强AI监管,认为AGI风险迫近,而杨立昆等学者认为当前模型远未达到智能水平[38][40]